Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 596–602 | Cite as

Theoretical Analysis of the Thermoelectric Generator Considering Surface to Surrounding Heat Convection and Contact Resistance

  • Dandan Pang
  • Aibing ZhangEmail author
  • BaoLin Wang
  • Guangyong Li
Article
  • 28 Downloads

Abstract

A general theoretical model of thermoelectric generation (TEG) is proposed based on the one-dimensional steady heat transport in this paper. The effect of heat convection between the thermoelectric legs and the ambient environment, and contact resistance between the heat reservoirs and thermoelectric couple on the performance of the TEG is studied. Fundamental formulas and closed-form solutions for the output power and conversion efficiency are derived. Numerical results show that the maximum output power and maximum conversion efficiency of the TEG are lower than those of the ideal TEG when the influence of heat convection and contact resistance are taken into consideration. The heat convection has a very small effect on the maximum output power, but causes a large reduction of conversion efficiency for the TEG, and this reduction becomes more significant as the length of thermoelectric couple increases. In addition, there always exists an optimum length of thermoelectric couple for the actual TEG, so as to achieve the maximum conversion efficiency when the effects of heat convection together with contact resistance are considered. The results of this paper may help to improve the design and optimization of TEG devices.

Keywords

Thermoelectric generator heat convection contact resistance efficiency output power 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The research was supported by the National Natural Science Foundation of China (NSFC) (Project Nos. 11402063, 11672084 and 11372086), the Natural Science Foundation of Zhejiang Province of China (LY17A020001), the Research Innovation Fund of Shenzhen City of China (Project Nos. JCYJ20170413104256729, JCYJ20160427184645 305), and the K.C. Wong Magna Fund in Ningbo University.

References

  1. 1.
    F.J. DiSalvo, Science 285, 703 (1999).CrossRefGoogle Scholar
  2. 2.
    L.E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  3. 3.
    E. Altenkirch, Phys. Z. 12, 920 (1911).Google Scholar
  4. 4.
    D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995).CrossRefGoogle Scholar
  5. 5.
    A.I. Hochaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P.D. Yang, Nature 451, 163 (2008).CrossRefGoogle Scholar
  6. 6.
    T.M. Tritt and M.A. Subramanian, MRS Bull. 31, 188 (2006).CrossRefGoogle Scholar
  7. 7.
    D. Vasaee and A. Shakouri, Phys. Rev. Lett. 92, 106103 (2004).CrossRefGoogle Scholar
  8. 8.
    A.B. Zhang, B.L. Wang, J. Wang, J.K. Du, C. Xie, and Y.A. Jin, Appl. Therm. Eng. 127, 1442 (2017).CrossRefGoogle Scholar
  9. 9.
    H.S. Kim, W.S. Liu, and Z.F. Ren, Energy Environ. Sci. 10, 69 (2017).CrossRefGoogle Scholar
  10. 10.
    Q.H. Zhang, X.Y. Huang, S.Q. Bai, X. Shi, C. Uher, and L.D. Chen, Adv. Funct. Mater. 10, 69 (2017).Google Scholar
  11. 11.
    H.J. Goldsmid, Introduction to Thermoelectricity (Heidelberg: Springer, 2009).Google Scholar
  12. 12.
    A.B. Zhang, B.L. Wang, D.D. Pang, J.B. Chen, J. Wang, and J.K. Du, Energy Convers. Manage. 166, 337 (2018).CrossRefGoogle Scholar
  13. 13.
    H.S. Kim, W.S. Liu, G. Chen, C.W. Chu, and Z.F. Ren, PNAS 112, 8205 (2015).CrossRefGoogle Scholar
  14. 14.
    H. Xiao, X.L. Gou, and S.W. Yang, J. Electron. Mater. 40, 1195 (2011).CrossRefGoogle Scholar
  15. 15.
    X.D. Wang, Y.X. Huang, C.H. Cheng, D.T.W. Lin, and C.H. Kang, Energy 47, 488 (2012).CrossRefGoogle Scholar
  16. 16.
    R. Rabari, S. Mahmud, and A. Dutta, Int. Commun. Heat Mass Transfer 56, 146 (2014).CrossRefGoogle Scholar
  17. 17.
    W.H. Chen, C.C. Wang, C.I. Hung, C.C. Yang, and R.C. Juang, Energy 64, 287 (2014).CrossRefGoogle Scholar
  18. 18.
    X.C. Xuan, K.C. Ng, C. Yap, and H.T. Chua, Int. J. Heat Mass Transfer 45, 5159 (2002).CrossRefGoogle Scholar
  19. 19.
    M. Gomez, R. Reid, B. Ohara, and H. Lee, J. Appl. Phys. 113, 174908 (2013).CrossRefGoogle Scholar
  20. 20.
    A.B. Zhang, B.L. Wang, D.D. Pang, L.W. He, J. Lou, J. Wang, and J.K. Du, Energy 147, 612 (2018).CrossRefGoogle Scholar
  21. 21.
    A.B. Zhang and B.L. Wang, Int. J. Therm. Sci. 104, 396 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Dandan Pang
    • 1
  • Aibing Zhang
    • 2
    Email author
  • BaoLin Wang
    • 3
  • Guangyong Li
    • 2
  1. 1.Henan Province Key Laboratory of Water Pollution Control and Rehabilitation TechnologyHenan University of Urban ConstructionPingdingshanPeople’s Republic of China
  2. 2.Piezoelectric Device Laboratory, School of Mechanical Engineering and MechanicsNingbo UniversityNingboPeople’s Republic of China
  3. 3.Centre for Infrastructure Engineering, School of Computing, Engineering and MathematicsWestern Sydney UniversityPenrithAustralia

Personalised recommendations