Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 642–648 | Cite as

Synthesis and DSSC Applications of Ru(II) Complexes Bearing Benzimidazole Type Ligands

  • Melek Tercan
  • Osman Dayan
Article
  • 32 Downloads

Abstract

In this study, the synthesis of 7 Ru(II) polypyridine complexes (C17) and their characterization by FT-IR, UV–Vis, 1H-NMR and ESI–MS spectroscopic methods have been reported. The use of the complexes as photosensitizers in dye-sensitized solar cells (DSSCs) has been investigated. The photovoltaic characteristics of the fabricated DSSC devices were examined under 1.5 G solar simulation and TiO2 was used as a semiconductor. Absorption and emission spectra of the complexes were examined, cyclic voltammograms of the Ru complexes were performed and HOMO–LUMO energy levels were calculated. Thus, electrochemical properties of the complexes and the energy diagrams, which shows the charge transfer characteristics of the complexes were studied. The alterations in the current–potential characteristics of the Ru sensitizers by modifications in ligands have been investigated. The effects of the substitutions on ligands are evaluated and power conversion efficiency value up to half of the reference sensitizer was obtained by C6 complex.

Graphical Abstract

Keywords

Ru(II) complex polypyridine DSSC Ru sensitizers cyclic voltammetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Beley and P.C. Gros, Organometallics 33, 4590 (2014).CrossRefGoogle Scholar
  2. 2.
    H. Cheema, R. Younts, L. Ogbose, B. Gautam, K. Gundogdu, and A. El-Shafei, Phys. Chem. Chem. Phys. 17, 2750 (2015).CrossRefGoogle Scholar
  3. 3.
    L.-L. Li and E.W.-G. Diau, Chem. Soc. Rev. 42, 291 (2013).CrossRefGoogle Scholar
  4. 4.
    R.M. O’Donnell, P.G. Johansson, M. Abrahamsson, and G.J. Meyer, Inorg. Chem. 52, 6839 (2013).CrossRefGoogle Scholar
  5. 5.
    R.N. Sampaio, A.V. Müller, A.S. Polo, G.J. Meyer, and A.C.S. Appl, Mater. Interfaces 9, 33446 (2017).CrossRefGoogle Scholar
  6. 6.
    D. Barpuzary, A. Banik, A.N. Panda, and M. Qureshi, J. Phys. Chem. C 119, 3892 (2015).CrossRefGoogle Scholar
  7. 7.
    J. Idigoras, G. Burdziński, J. Karolczak, J. Kubicki, G. Oskam, J.A. Anta, and M. Ziółek, J. Phys. Chem. C 119, 3931 (2015).CrossRefGoogle Scholar
  8. 8.
    J. Warnan, V.-M. Guerin, F.D.R.B. Anne, Y. Pellegrin, E. Blart, D. Jacquemin, T. Pauporté, and F. Odobel, J. Phys. Chem. C 117, 8652 (2013).CrossRefGoogle Scholar
  9. 9.
    A.O. Adeloye and P.A. Ajibade, Molecules 19, 12421 (2014).CrossRefGoogle Scholar
  10. 10.
    J.C. Freys, J.M. Gardner, L. D’Amario, A.M. Brown, and L. Hammarström, Dalton Trans. 41, 13105 (2012).CrossRefGoogle Scholar
  11. 11.
    F. Nisic, A. Colombo, C. Dragonetti, E. Garoni, D. Marinotto, S. Righetto, F. De Angelis, M.G. Lobello, P. Salvatori, and P. Biagini, Organometallics 34, 94 (2014).CrossRefGoogle Scholar
  12. 12.
    B. Pashaei, H. Shahroosvand, M. Graetzel, and M.K. Nazeeruddin, Chem. Rev. 116, 9485 (2016).CrossRefGoogle Scholar
  13. 13.
    S. Shalini, R. Balasundaraprabhu, T.S. Kumar, N. Prabavathy, S. Senthilarasu, and S. Prasanna, Int. J. Energy Res. 40, 1303 (2016).CrossRefGoogle Scholar
  14. 14.
    Z.Z. Lu, J.D. Peng, A.K. Wu, C.H. Lin, C.G. Wu, K.C. Ho, Y.C. Lin, and K.L. Lu, Eur. J. Inorg. Chem. 2016, 1214 (2016).CrossRefGoogle Scholar
  15. 15.
    T. Swetha, S. Niveditha, K. Bhanuprakash, A. Islam, L. Han, I.M. Bedja, R. Fallahpour, and S.P. Singh, Inorg. Chem. Commun. 51, 61 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Chem. Rev. 110, 6595 (2010).CrossRefGoogle Scholar
  17. 17.
    D. Sygkridou, C. Sahin, C. Varlikli, and E. Stathatos, Electrochim. Acta 160, 227 (2015).CrossRefGoogle Scholar
  18. 18.
    A. Grabulosa, M. Beley, P.C. Gros, S. Cazzanti, S. Caramori, and C.A. Bignozzi, Inorg. Chem. 48, 8030 (2009).CrossRefGoogle Scholar
  19. 19.
    W.-H. Lu, C.-S. Chou, C.-Y. Chen, and P. Wu, Sol. Energy 139, 318 (2016).CrossRefGoogle Scholar
  20. 20.
    T. Luitel and F.P. Zamborini, Langmuir 29, 13582 (2013).CrossRefGoogle Scholar
  21. 21.
    M.K. Nazeeruddin, P. Pechy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, and V. Shklover, J. Am. Chem. Soc. 123, 1613 (2001).CrossRefGoogle Scholar
  22. 22.
    O. Dayan, N. Özdemir, F. Yakuphanoğlu, Z. Şerbetci, A. Bilici, B. Çetinkaya, and M. Tercan, J. Mater. Sci. Mater. Electron. 29, 11045 (2018).CrossRefGoogle Scholar
  23. 23.
    Y.T. Azar and M. Payami, Phys. Chem. Chem. Phys. 17, 29574 (2015).CrossRefGoogle Scholar
  24. 24.
    A.V. Müller, L.D. Ramos, K.P. Frin, K.T. de Oliveira, and A.S. Polo, RSC Adv. 6, 46487 (2016).CrossRefGoogle Scholar
  25. 25.
    G. Tsukamoto, K. Yoshino, T. Kohno, H. Ohtaka, H. Kagaya, and K. Ito, J. Med. Chem. 23, 734 (1980).CrossRefGoogle Scholar
  26. 26.
    Q.Y. Yu, B.X. Lei, J.M. Liu, Y. Shen, L.M. Xiao, R.L. Qiu, D.B. Kuang, and C.Y. Su, Inorg. Chim. Acta 392, 388 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Faculty of Sciences and Art, Department of ChemistryÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey

Personalised recommendations