Journal of Electronic Materials

, Volume 48, Issue 1, pp 634–641 | Cite as

Influence of Co Doping on the Structural, Dielectric and Raman Properties of Ba0.75Sr0.25Ti1−xCoxO3

  • Ratnamala Ganjir
  • P. K. BajpaiEmail author


We synthesized Ba1−xSrxTiO3 (BST) and Co doped Ba0.75Sr0.25CoxTi1−xO3 (BSCTx) compositions (x = 0.03, 0.05, 0.07) by the solid state reaction route and probed the effect of Co-doping on the structural, microstructural, dielectric and phonon behaviour. Room temperature x-ray diffraction patterns of sintered ceramics reveal perovskite type average cubic crystalline structure (space group Pm-3m) for all doped compositions, whereas, pure BST composition stabilizes in the tetragonal crystalline phase (space group P4mm). Absence of any impurity peaks in the doped samples reveals that Co-ions are entering into the lattice without any metal clustering. Quantitative full profile fitting using Reitveld refinement fits well in the cubic phase giving a small value of goodness of the fitting parameter (Rwp). The real part of the dielectric permittivity as well as dielectric loss (tan δ) decreases with Co-doping indicating that intrinsic defects get annealed with doping. \( (\varepsilon^{\prime}/\varepsilon^{\prime\prime} - T) \) plots clearly show the cubic to tetragonal phase transition in BST at around 50°C, whereas Co-doped samples show no such transition in the temperature range studied. Temperature dependent Raman spectra reveal the characteristic phonon modes associated with the tetragonal phase at room temperature, whereas, Co-doped samples exhibit only bands associated with local disorder in the cubic phase. The spectral features of tetragonal phase appear around − 10°C in the 3% Co-doped system indicating the decrease of transition temperature with Co-doping. The analysis of deconvoluted Raman parameters using two sub-lattice models clearly reveals the structural disorder due to doping with slightly distorted TiO6 octahedra getting almost perfect thus giving rise to a cubic phase in the doped system.


Acceptor doping Raman spectra dielectric loss structural phase transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



P.K. Bajpai is grateful to University Grants Commission (UGC), and Department of Science and Technology, Government of India, New Delhi and for providing facilities under Special Assistance Program (SAP) and FIST program to the Department of Pure and Applied, GGV, Bilaspur. Ratnamala is thankful to GGV for UGC fellowship to carry out of the work.


  1. 1.
    L. Zhou, S. Jiang, and S. Zhang, J. Am. Ceram. Soc. Commun. 74, 2925 (1991).CrossRefGoogle Scholar
  2. 2.
    J.W. Liou and B.S. Chiou, Mater. Chem. 51, 59 (1997).Google Scholar
  3. 3.
    D. Roy and S.D. Krapandihi, Appl. Phys. Lett. 62, 1056 (1993).CrossRefGoogle Scholar
  4. 4.
    G.W. Dietz, M. Schumacher, R. Waser, S.K. Streiffer, C. Basceri, and A.I. Kingon, Appl. Phys. 82, 2359 (1997).CrossRefGoogle Scholar
  5. 5.
    J.S. Kim and S.G. Yoon, J. Vac. Sci. Technol. B 18, 216 (2000).CrossRefGoogle Scholar
  6. 6.
    S.J. Fidziuszko, I.C. Hunter, and T. Itoh, IEEE Trans. Microw. Theory Tech. 50, 706 (2002).CrossRefGoogle Scholar
  7. 7.
    L. Xiao, K.L. Choy, and I. Harrison, Surf. Coat. Technol. 205, 2989 (2011).CrossRefGoogle Scholar
  8. 8.
    H. Tao, T.J. Price, D.M. Iddles, A. Uusimaki, and H. Jantunen, Eur. Ceram. Soc. 25, 2531 (2005).CrossRefGoogle Scholar
  9. 9.
    X. Liang, W. Wu, and Z. Meng, Mater. Sci. Eng. B 99, 366 (2003).CrossRefGoogle Scholar
  10. 10.
    S.G. Dhumal, S.B. Kulkarni, and E. Moses, J. Mater. Sci. 22, 1421 (2016).Google Scholar
  11. 11.
    S. Maitra, M. Banerjee, S. Mukharjee, and P.K. Singh, J. Aust. Ceram. Soc. 49, 79 (2013).Google Scholar
  12. 12.
    P.K. Bajpai, C.R.K. Mohan, R. Ganjir, R. Kumar, A. Kumar, and R.S. Katiyar, J. Raman Spectrosc. 49, 324 (2018).CrossRefGoogle Scholar
  13. 13.
    C.R.K. Mohan and P.K. Bajpai, Physica B 403, 2173 (2008).CrossRefGoogle Scholar
  14. 14.
    L. Padilla-Campos, D.E. Diaz-Droguett, R. Lavín, and S. Fuentes, J. Mol. Struct. 1099, 502 (2015).CrossRefGoogle Scholar
  15. 15.
    X. Sun, B. Zhu, and T. Liu, Appl. Phys. 99, 08703 (2006).Google Scholar
  16. 16.
    A. Slodczyk, P. Colomban, and P. Thi, Phys. Chem. Solids 69, 2503 (2008).CrossRefGoogle Scholar
  17. 17.
    D.A. Tenne and X. Xiaoxing, J. Am. Ceram. Soc. 2008, 91 (1820).Google Scholar
  18. 18.
    A. Slodcyzk and P. Colomban, Materials 3, 5007 (2010).CrossRefGoogle Scholar
  19. 19.
    Z. Lazarević, N. Romcevic, M. Vijatović, N. Paunović, M. Romcevic, B. Stojanović, and Z. Dohcevic-Mitrovica, Acta Phys. Pol. A 115, 808 (2009).CrossRefGoogle Scholar
  20. 20.
    G. Busca, V. Buscaglia, M. Leoni, and P. Nanni, Chem. Mater. 6, 955 (1994).CrossRefGoogle Scholar
  21. 21.
    F. Moura, A.Z. Semoes, L.S. Cavalcante, M. Zampieri, J.A. Varela, and E. Longo, Appl. Phys. Lett. 92, 032905 (2008).CrossRefGoogle Scholar
  22. 22.
    O.A. Masalova, F.V. Shirokov, Y.I. Yuzyuk, M.E.I. Marssi, M. Jain, N. Ortega, and R.S. Katiyar, Phys. Solid State 56, 310 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Pure and Applied PhysicsGuru Ghasidas VishwavidyalayaBilaspurIndia

Personalised recommendations