Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 611–620 | Cite as

Electrical Behavior of a Nanoporous Nb2O5/Pt Schottky Contact at Elevated Temperatures

  • Nur Samihah Khairir
  • Rozina Abdul Rani
  • Rosmalini Ab Kadir
  • Norhayati Soin
  • Wan Fazlida Hanim Abdullah
  • Mohamad Hafiz Mamat
  • M. Rusop
  • Ahmad Sabirin ZoolfakarEmail author
Article
  • 25 Downloads

Abstract

This paper discusses the effects of temperature on Schottky behavior of anodized niobium pentoxide (Nb2O5) used to form a nanoporous structure film. The application of a typical Schottky diode is limited at high temperature, and studies of different materials used in the fabrication are still in demand. Nb2O5 as a Schottky diode operation at elevated temperature has yet to be investigated. A nanoporous structure has the potential of producing high conductivity and also has the ability to spread heat since it has higher surface area. The structure was synthesized by anodizing niobium foils in ethylene glycol-based solution with 0.4 wt.% of H2O in different anodization times; 4 min, 8 min, 10 min, 40 min and 60 min. The anodized films were then annealed for 30 min at 440°C. The metal contact used for current–voltage (IV) testing was platinum (Pt) and it was deposited via thermal evaporator at 30-nm thickness. Various characterization tests were conducted. Field emission scanning electron microscopy (FESEM) images suggested that longer anodization time produced larger pore sizes. The x-ray diffraction (XRD) confirmed the crystallization of Nb2O5 to be in an orthorhombic phase, while atomic force microscopy (AFM) showed surface roughness decreasing with longer anodization time. Higher surface roughness produced lower leakage current. IV tests were conducted under different temperatures of 25°C, 50°C, 75°C, 100°C and 125°C to study the heat effect on IV Schottky behavior of anodized nanoporous Nb2O5. By testing the IV characteristics at elevated temperature, the electrical parameters were observed to have strong dependency on temperature. A device with lower thickness and operating at higher temperature produced higher current contribution. From IV tests, it was observed that the increment of barrier height and decrement of ideality factor will be affected by increased temperature. For Schottky Pt/Nb2O5, barrier height increased in the range from 0.91 to 1.05, while the ideality factor decreased from 2.24 to 1.42.

Keywords

Niobium pentoxide nanoporous elevated temperature Schottky emission thermionic emission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to acknowledge with gratitude the NANO-Electronic Centre of Faculty of Electrical Engineering UiTM for the facilities. This work is fully supported by the Ministry of Higher Education, Malaysia (MOHE) under the Fundamental Research Grant Scheme [FRGS; project code: 600-RMI/FRGS 5/3 (7/2015)].

References

  1. 1.
    M. Peiniger and H. Piel, IEEE Trans. Nucl. Sci. 32, 3610 (1985).CrossRefGoogle Scholar
  2. 2.
    B.M. Powell, P. Martel, and A.N.D.A.D.B. Woods, Can. J. Phys. 55, 1601 (1977).CrossRefGoogle Scholar
  3. 3.
    F. Cardarelli, Mater. Des. 22, 237 (2001).CrossRefGoogle Scholar
  4. 4.
    E.I. Ko and J.G. Weissman, Catal. Today 8, 27 (1990).CrossRefGoogle Scholar
  5. 5.
    R.A. Rani, A.S. Zoolfakar, A.P. O’Mullane, M.W. Austin, and K. Kalantar-Zadeh, J. Mater. Chem. A 2, 15683 (2014).CrossRefGoogle Scholar
  6. 6.
    I. Zhitomirsky, Mater. Lett. 35, 188 (1998).CrossRefGoogle Scholar
  7. 7.
    M. Hossein and H. Reza, J. Inorg. Organomet. P. 22, 158 (2012).Google Scholar
  8. 8.
    J. Zhao, X. Wang, R. Xu, Y. Mi, and Y. Li, Electrochem. Solid State Lett. 10, C31 (2007).CrossRefGoogle Scholar
  9. 9.
    Y. Lu, H. Hao, S. Zhang, H. Liu, C. Su, Z. Yao, and M. Cao, J. Eur. Ceram. Soc. 37, 123 (2017).CrossRefGoogle Scholar
  10. 10.
    C. Nico, T. Monteiro, and M.P.F. Graça, Prog. Mater Sci. 80, 1 (2016).CrossRefGoogle Scholar
  11. 11.
    R.A. Rani, A.S. Zoolfakar, J.Z. Oua, M.R. Field, M. Austin, and K. Kalantar-Zadeh, Sens. Actuators B Chem. 176, 149 (2013).CrossRefGoogle Scholar
  12. 12.
    J.J. Diaz Leon, K.J. Norris, J.J. Yang, J.F. Sevic, and N.P. Kobayashi, Appl. Phys. Lett. 110, 103102 (2017).CrossRefGoogle Scholar
  13. 13.
    X. Lin, M. Wu, Y. Wang, A. Hagfeldt, and T. Ma, Chem. Commun. 47, 11489 (2011).CrossRefGoogle Scholar
  14. 14.
    D. Lee, W. Xiang, D. Sung, R. Dong, S. Oh, H. Choi, and H. Hwang, in Non-volatile Memory Technology Symposium (2006), p. 89.Google Scholar
  15. 15.
    C. Blake, D. Kinzer, and P. Wood, in Proceedings of 1994 IEEE Applied Power Electronics Conference Exposition—ASPEC’94 (1994).Google Scholar
  16. 16.
    A.C. Schmitz, A.T. Ping, M.A. Khan, Q. Chen, J.W. Yang, and I. Adesida, Semicond. Sci. Technol. 11, 1464 (1996).CrossRefGoogle Scholar
  17. 17.
    M.L. Chin, P. Periasamy, T.P. O’Regan, M. Amani, C. Tan, R.P. O’Hayre, J.J. Berry, R.M. Osgood, P.A. Parilla, D.S. Ginley, and M. Dubey, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 31, 051204 (2013).Google Scholar
  18. 18.
    E.W. Cowell, N. Alimardani, C.C. Knutson, J.F. Conley, D.A. Keszler, B.J. Gibbons, and J.F. Wager, Adv. Mater. 23, 74 (2011).CrossRefGoogle Scholar
  19. 19.
    N. Alimardani, J.M. McGlone, J.F. Wager, and J.F. Conley, J. Vac. Sci. Technol. A Vacuum Surf. Film 32, 01A122 (2014).CrossRefGoogle Scholar
  20. 20.
    S.S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, Electrochim. Acta 53, 2226 (2008).CrossRefGoogle Scholar
  21. 21.
    H. Yang, J. Heo, S. Park, H.J. Song, D.H. Seo, K.-E. Byun, P. Kim, I. Yoo, H.-J. Chung, and K. Kim, Science 336, 1140 (2012).CrossRefGoogle Scholar
  22. 22.
    A. Di Bartolomeo, F. Giubileo, S. Santandrea, F. Romeo, R. Citro, T. Schroeder, and G. Lupina, Nanotechnology 22, 275702 (2011).CrossRefGoogle Scholar
  23. 23.
    Y.J. Lin and J.H. Lin, Appl. Surf. Sci. 311, 224 (2014).CrossRefGoogle Scholar
  24. 24.
    M.D. Barlow, Metal-Semiconductor Contacts for Schottky Diode Fabrication, Youngstown State University, 2007.Google Scholar
  25. 25.
    S. Chand and J. Kumar, J. Appl. Phys. 82, 5005 (1997).CrossRefGoogle Scholar
  26. 26.
    S. Chandramohan, J.H. Kang, Y.S. Katharria, N. Han, Y.S. Beak, K.B. Ko, J.B. Park, B.D. Ryu, H.K. Kim, E.-K. Suh, and C.-H. Hong, J. Phys. D Appl. Phys. 45, 145101 (2012).CrossRefGoogle Scholar
  27. 27.
    K. V. O. Rabah, International Atomic Energy Agency Urfited Nations Education Scientific and Cultural Organisation (1994).Google Scholar
  28. 28.
    J. Raymond and E. Hueting, US 6441454 B2, 2002.Google Scholar
  29. 29.
    J.Z. Ou, R.A. Rani, M.H. Ham, M.R. Field, Y. Zhang, H. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R.B. Kaner, and K. Kalantar-Zadeh, ACS Nano 6, 4045 (2012).CrossRefGoogle Scholar
  30. 30.
    N.S. Khairir, M.R. Mat Hussin, M.I. Khairir, A.S.M.M. Uz-Zaman, W.F.H. Abdullah, M.H. Mamat, and A.S. Zoolfakar, Surf. Interfaces 6, 229 (2017).CrossRefGoogle Scholar
  31. 31.
    R.A. Rani, A.S. Zoolfakar, J.Z. Ou, R.A. Kadir, H. Nili, K. Latham, S. Sriram, M. Bhaskaran, S. Zhuiykov, R.B. Kaner, and K. Kalantar-zadeh, Chem. Commun. (Camb.) 49, 6349 (2013).CrossRefGoogle Scholar
  32. 32.
    R.A. Kadir, R.A. Rani, A.S. Zoolfakar, J.Z. Ou, M. Shafiei, W. Wlodarski, and K. Kalantar-Zadeh, Sens. Actuators B Chem. 202, 74 (2014).CrossRefGoogle Scholar
  33. 33.
    R. Abdul Rani, A.S. Zoolfakar, J. Subbiah, J.Z. Ou, and K. Kalantar-Zadeh, Electrochem. Commun. 40, 20 (2014).CrossRefGoogle Scholar
  34. 34.
    Hao Wen, Zhifu Liu, Jiao Wang, Qunbao Yang, Yongxiang Li, and Yu Jerry, Appl. Surf. Sci. 257, 10084 (2011).CrossRefGoogle Scholar
  35. 35.
    T.G.H. Nguyen, T.V.A. Pham, T.X. Phuong, T.X.B. Lam, V.M. Tran, and T.P.T. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 035008/1 (2013).Google Scholar
  36. 36.
    M.M. Rahman, R.A. Rani, A.Z. Sadek, A.S. Zoolfakar, M.R. Field, T. Ramireddy, K. Kalantar-zadeh, and Y. Chen, J. Mater. Chem. A 1, 11019 (2013).CrossRefGoogle Scholar
  37. 37.
    T. Ikeya and M. Senna, J. Non Cryst. Solids 105, 243 (1988).CrossRefGoogle Scholar
  38. 38.
    I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki, Electrochem. Commun. 7, 97 (2005).CrossRefGoogle Scholar
  39. 39.
    D.C. Bharti and S.-W. Rhee, Thin Solid Films 548, 195 (2013).CrossRefGoogle Scholar
  40. 40.
    A.R. Deniz, Z. Caldrin, O. Metin, H. Can, K. Meral, and S. Aydogan, Mat. Sci. Semicon. Proc. 27, 163 (2014).CrossRefGoogle Scholar
  41. 41.
    R.K. Gupta, K. Ghosh, and P.K. Kahol, Physica E 41, 876 (2009).CrossRefGoogle Scholar
  42. 42.
    M. Pepper, Phys. Technol. 5, 223 (1974).CrossRefGoogle Scholar
  43. 43.
    A.H. Mukaromah, G.T.M. Kadja, R.R. Mukti, I.R. Pratama, M.A. Zulfikar, and B. Buchari, J. Math. Fundam. Sci. 48, 241 (2016).CrossRefGoogle Scholar
  44. 44.
    Y.P. Varshni, Physica 34, 149 (1967).CrossRefGoogle Scholar
  45. 45.
    W. Shockley, Bell Syst. Tech. J. 28, 435 (1949).CrossRefGoogle Scholar
  46. 46.
    I. Jyothi, H. Yang, K. Shim, V. Janardhanam, S. Kang, H. Hong, and C. Choi, Mater. Trans. 54, 1655 (2013).CrossRefGoogle Scholar
  47. 47.
    S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (New York: Wiley, 2006).CrossRefGoogle Scholar
  48. 48.
    Z.Q. Zheng, L.F. Zhu, and B. Zing, Nanoscale Res. Lett. 10, 293 (2015).CrossRefGoogle Scholar
  49. 49.
    M.M. Chandra and M. Prasad, Phys. Status Solidi 87, K97 (1985).CrossRefGoogle Scholar
  50. 50.
    K. Zeghdar, L. Dehimi, A. Saadoune, and N. Sengouga, J. Semicond. 36, 124002 (2015).CrossRefGoogle Scholar
  51. 51.
    X.W. Wu, L.C. Zhang, P. Bradley, D.K. Chin, and T. Van Duzer, Appl. Phys. Lett. 50, 287 (1987).CrossRefGoogle Scholar
  52. 52.
    A.B. Guvenc, C. Ozkan, and M. Ozkan, MRS Proc. 1359, mrss11 (2011).CrossRefGoogle Scholar
  53. 53.
    A.A.M. Farag, A. Ashery, E.M.A. Ahmed, and M.A. Salem, J. Alloys Compd. 495, 116 (2010).CrossRefGoogle Scholar
  54. 54.
    A.G. Imer and Y.S. Ocak, J. Electron. Mater. 45, 5347 (2016).CrossRefGoogle Scholar
  55. 55.
    E.L. Murphy and R. Good Jr, Phys. Rev. 102, 1464 (1956).CrossRefGoogle Scholar
  56. 56.
    P.W. Avraam, N.D.M. Hine, P. Tangney, and P.D. Haynes, Phys. Rev. B 83, 195102 (2011).CrossRefGoogle Scholar
  57. 57.
    J. Yu, L. Yuan, H. Wen, M. Shafiei, M.R. Field, J. Liang, J. Yang, Z.F. Liu, W. Wlodarski, N. Motta, Y.X. Li, G. Zhang, K. Kalantar-zadeh, and P.T. Lai, Nanotechnology 24, 495501 (2013).CrossRefGoogle Scholar
  58. 58.
    P.M. Parameshwari, B.V. Shrisha, and K. Gopalakrishna Naik, AIP Conf. Proc. 1665, 120009 (2015).Google Scholar
  59. 59.
    M. Asghar, K. Mahmood, M. Faisal, and M.A. Hasan, J. Phys. Conf. Ser. 439, 012030 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Nur Samihah Khairir
    • 1
  • Rozina Abdul Rani
    • 2
    • 3
  • Rosmalini Ab Kadir
    • 1
  • Norhayati Soin
    • 4
  • Wan Fazlida Hanim Abdullah
    • 1
  • Mohamad Hafiz Mamat
    • 1
  • M. Rusop
    • 1
    • 2
  • Ahmad Sabirin Zoolfakar
    • 1
    Email author
  1. 1.NANO-ElecTronic Centre (NET), Faculty of Electrical EngineeringUniversiti Teknologi MARAShah AlamMalaysia
  2. 2.NANO-SciTech Centre, Institute of ScienceUniversiti Teknologi MARAShah AlamMalaysia
  3. 3.Faculty of Mechanical EngineeringUniversiti Teknologi MARAShah AlamMalaysia
  4. 4.Department of Electrical Engineering, Faculty of EngineeringUniversiti of MalayaKuala LumpurMalaysia

Personalised recommendations