Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 551–559 | Cite as

Designable Hierarchical Cathode for a High-Efficiency Polysulfide Trapper Toward High-Performance Lithium–Sulfur Batteries

  • Xiaoqing Guo
  • Xiaofei Liu
  • Huali Yu
  • Youcai Lu
  • Qingchao LiuEmail author
  • Zhongjun LiEmail author
Article
  • 38 Downloads

Abstract

Lithium–sulfur batteries have attracted wide attention due to their high theoretical capacity and energy density. However, practical application of lithium–sulfur batteries is still hampered by many problems, especially poor conductivity of sulfur and the polysulfide shuttle. To resolve these problems, we have designed a sulfur host with a hierarchical structure. This host is made by growing MnO2 nanosheets on one side of carbon paper, of which the other side is coated with carbon nanotubes modified with g-C3N4. The fabricated sulfur host provides a physical shield and chemical adsorption against polysulfide shuttling. Moreover, the conductive framework of carbon nanotubes can allow efficient impregnation of sulfur and facilitate electron transport. Benefiting from these synergetic effects, the as-made sulfur cathode with 70.3 wt.% sulfur content delivers enhanced electrochemical performances including a high capacity, an excellent rate performance and a superior cycling stability.

Keywords

Lithium–sulfur batteries designable hierarchical cathode polysulfide trapper high-performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is financially supported by China Postdoctoral Science Foundation (Grant No. 2017M610459) and the National Science Foundation of China (Grant Nos. 21701145, 21701146 and 21671176).

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11664_2018_6754_MOESM1_ESM.pdf (663 kb)
Supplementary material 1 (PDF 663 kb)

References

  1. 1.
    A. Rosenman, E. Markevich, G. Salitra, D. Aurbach, A. Garsuch, and F.F. Chesneau, Adv. Energy Mater. 5, 1500212 (2015).CrossRefGoogle Scholar
  2. 2.
    N. Nitta, F. Wu, J.T. Lee, and G. Yushin, Mater. Today 18, 252 (2015).CrossRefGoogle Scholar
  3. 3.
    H.D. Yoo, E. Markevich, G. Salitra, D. Sharon, and D. Aurbach, Mater. Today 17, 110 (2014).CrossRefGoogle Scholar
  4. 4.
    Y. Yang, G.Y. Zheng, and Y. Cui, Chem. Soc. Rev. 42, 3018 (2013).CrossRefGoogle Scholar
  5. 5.
    S. Rehman, S. Guo, and Y. Hou, Adv. Mater. 28, 3167 (2016).CrossRefGoogle Scholar
  6. 6.
    P.G. Bruce, S.A. Freunberger, L.J. Hardwick, and J.M. Tarascon, Nat. Mater. 11, 19 (2012).CrossRefGoogle Scholar
  7. 7.
    J. Yoo, S.J. Cho, G.Y. Jung, S.H. Kim, K.H. Choi, J.H. Kim, C.K. Lee, S.K. Kwak, and S.Y. Lee, Nano Lett. 16, 3292 (2016).CrossRefGoogle Scholar
  8. 8.
    W.J. Ren, L.Q. Xu, L. Zhu, X.Y. Wang, X.J. Ma, D.B. Wang, and A.C.S. Appl, Mater. Interfaces 10, 11642 (2018).CrossRefGoogle Scholar
  9. 9.
    Z.L. Ma, L. Tao, D.D. Liu, Z. Li, Y.Q. Zhang, Z.J. Liu, H.W. Liu, R. Chen, J. Huo, and S.Y. Wang, J. Mater. Chem. A 5, 9412 (2017).CrossRefGoogle Scholar
  10. 10.
    Y. Jiang, F. Chen, Y. Gao, Y. Wang, S. Wang, Q. Gao, Z. Jiao, B. Zhao, and Z. Chen, J. Power Sources 342, 929 (2017).CrossRefGoogle Scholar
  11. 11.
    Y. Xia, H. Zhong, R. Fang, C. Liang, Z. Xiao, H. Huang, Y. Gan, J. Zhang, X. Tao, and W. Zhang, J. Power Sources 378, 73 (2018).CrossRefGoogle Scholar
  12. 12.
    X. Fang and H. Peng, Small 11, 1488 (2015).CrossRefGoogle Scholar
  13. 13.
    J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee, T. Bein, and L.F. Nazar, Angew. Chem. Int. Ed. 51, 3591 (2012).CrossRefGoogle Scholar
  14. 14.
    S.H. Liu, J. Li, X. Yan, Q.F. Su, Y.H. Lu, J.S. Qiu, Z.Y. Wang, X.D. Lin, J.L. Huang, R.L. Liu, B.N. Zhen, L.Y. Chen, R.W. Fu, and D.C. Wu, Adv. Mater. 30, 1706895 (2018).CrossRefGoogle Scholar
  15. 15.
    J.Q. Shan, Y.X. Liu, Y.Z. Su, P. Liu, X.D. Zhuang, D.Q. Wu, F. Zhang, and X.L. Feng, J. Mater. Chem. A 4, 314 (2016).CrossRefGoogle Scholar
  16. 16.
    G. Zheng, Q. Zhang, J.J. Cha, Y. Yang, W. Li, Z.W. Seh, and Y. Cui, Nano Lett. 13, 1265 (2013).CrossRefGoogle Scholar
  17. 17.
    N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, and L.A. Archer, Angew. Chem. Int. Ed. 50, 5904 (2011).CrossRefGoogle Scholar
  18. 18.
    L. Ni, G. Zhao, G. Yang, G. Niu, M. Chen, G. Diao, and A.C.S. Appl, Mater. Interfaces 9, 34793 (2017).CrossRefGoogle Scholar
  19. 19.
    Z. Liang, G. Zheng, W. Li, Z.-W. Seh, H. Yao, K. Yan, D. Kong, and Y. Cui, ACS Nano 8, 5249 (2014).CrossRefGoogle Scholar
  20. 20.
    Y.N. Liu, G.L. Feng, X.D. Guo, Z.G. Wu, Y.X. Chen, W. Xiang, J.S. Li, and B.H. Zhong, J. Alloys Compd. 748, 100 (2018).CrossRefGoogle Scholar
  21. 21.
    T. Lei, W. Chen, J. Huang, C. Yan, H. Sun, C. Wang, W. Zhang, Y. Li, and J. Xiong, Adv. Energy Mater. 7, 1601843 (2017).CrossRefGoogle Scholar
  22. 22.
    Z. Yuan, H.J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen, D.W. Wang, X.B. Cheng, F. Wei, and Q. Zhang, Nano Lett. 16, 519 (2016).CrossRefGoogle Scholar
  23. 23.
    Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.M. Cheng, and F. Li, Nat. Commun. 8, 14627 (2017).CrossRefGoogle Scholar
  24. 24.
    D.R. Deng, F. Xue, Y.J. Jia, J.C. Ye, C.D. Bai, M.S. Zheng, and Q.F. Dong, ACS Nano 11, 6031 (2017).CrossRefGoogle Scholar
  25. 25.
    Z. Meng, Y. Xie, T. Cai, Z. Sun, K. Jiang, and W.Q. Han, Electrochim. Acta 210, 829 (2016).CrossRefGoogle Scholar
  26. 26.
    C.Y. Fan, H.Y. Yuan, H.H. Li, H.F. Wang, W.L. Li, H.Z. Sun, X.L. Wu, J.P. Zhang, and A.C.S. Appl, Mater. Interfaces 8, 16108 (2016).CrossRefGoogle Scholar
  27. 27.
    K. Liao, P. Mao, N. Li, M. Han, J. Yi, P. He, Y. Sun, and H. Zhou, J. Mater. Chem. A 4, 5406 (2016).CrossRefGoogle Scholar
  28. 28.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, and M. Antonietti, Nat. Mater. 8, 76 (2009).CrossRefGoogle Scholar
  29. 29.
    L. Zhang, F. Zhang, G. Huang, J. Wang, X. Du, Y. Qin, and L. Wang, J. Power Sources 261, 311 (2014).CrossRefGoogle Scholar
  30. 30.
    R.C. Pawar, S. Kang, S.H. Ahn, and C.S. Lee, RSC Adv. 5, 24281 (2015).CrossRefGoogle Scholar
  31. 31.
    C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach, and J.P. Pereira-Ramos, Solid State Ionics 159, 345 (2003).CrossRefGoogle Scholar
  32. 32.
    K.W. Nam and K.B. Kim, J. Electrochem. Soc. 153, A81 (2006).CrossRefGoogle Scholar
  33. 33.
    J. Wang, Y. Yang, Z. Huang, and F. Kang, J. Power Sources 224, 86 (2013).CrossRefGoogle Scholar
  34. 34.
    J. Gomez, E.E. Kalu, R. Nelson, M.H. Weatherspoon, and J.P. Zheng, J. Mater. Chem. A 1, 3287 (2013).CrossRefGoogle Scholar
  35. 35.
    L. Bao, J. Zang, and X. Li, Nano Lett. 11, 1215 (2011).CrossRefGoogle Scholar
  36. 36.
    A.F. Shojaei, K. Tabatabaeian, F. Shirini, and S.Z. Hejazi, RSC Adv. 4, 9509 (2014).CrossRefGoogle Scholar
  37. 37.
    H. Zhang and A. Yu, J. Phys. Chem. C 118, 11628 (2014).CrossRefGoogle Scholar
  38. 38.
    S. Chen, B. Sun, X. Xie, A.-K. Mondal, X. Huang, and G. Wang, Nano Energy 16, 268 (2015).CrossRefGoogle Scholar
  39. 39.
    X. Zhou, F. Chen, and J. Yang, J. Energy Chem. 24, 448 (2015).CrossRefGoogle Scholar
  40. 40.
    S. Rehman, T. Tang, Z. Ali, X. Huang, and Y. Hou, Small 13, 1700087 (2017).CrossRefGoogle Scholar
  41. 41.
    A. Manthiram, Y. Fu, S. Chung, C. Zu, and Y. Su, Chem. Rev. 114, 11751 (2014).CrossRefGoogle Scholar
  42. 42.
    Z. Xiao, Z. Yang, L. Wang, H. Nie, M. Zhong, Q. Lai, X. Xu, L. Zhang, and S. Huang, Adv. Mater. 27, 2891 (2015).CrossRefGoogle Scholar
  43. 43.
    L. Zhu, L. You, P. Zhu, X. Shen, L. Yang, and K. Xiao, ACS Sustain. Chem. Eng. 6, 248 (2018).CrossRefGoogle Scholar
  44. 44.
    Q. Pang, D. Kundu, M. Cuisinier, and L.F. Nazar, Nat. Commun. 5, 4759 (2014).CrossRefGoogle Scholar
  45. 45.
    Z. Wang, Y. Dong, H. Li, Z. Zhao, H.-B. Wu, C. Hao, S. Liu, J. Qiu, and X. Lou, Nat. Commun. 5, 5002 (2014).CrossRefGoogle Scholar
  46. 46.
    X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, and L.F. Nazar, Nat. Commun. 6, 5682 (2015).CrossRefGoogle Scholar
  47. 47.
    L. Ni, Z. Wu, G. Zhao, C. Sun, Q. Zhou, X. Gong, and G. Diao, Small 13, 1603466 (2017).CrossRefGoogle Scholar
  48. 48.
    M. Li, C. Wang, L. Miao, J. Xiang, T. Wang, K. Yuan, J. Chen, and Y. Huang, J. Mater. Chem. A 6, 5862 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.The College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations