Journal of Electronic Materials

, Volume 48, Issue 1, pp 621–633 | Cite as

First-Principles Study on Optical and Thermodynamic Behaviour of Multiferroic BiFeO3 Using LSDA+ U and TB-mBJ Methods

  • R. Mahesh
  • E. Sagar
  • P. Venugopal ReddyEmail author


Optical and thermodynamic behavior of three different phases of multiferroic BiFeO3 compound were investigated using first-principles calculations under the local (spin)-density approximation (L(S)DA) and TB-mBJ semi-local (Tran-Blaha modified Becke-Johnson) potential approximation methods by applying WIEN2k code. In order to study the ground state properties of this compound, the total energies were calculated as a function of reduced volumes using Brich Murnaghan equation. To explore the ferroelectric behavior, the real and imaginary parts of the dielectric functions were obtained at ambient conditions and analyzed using both the LSDA+ U and TB-mBJ potentials. In addition, thermodynamic properties were also obtained using Gibbs2 code. Finally, it has been concluded that the results obtained in the present investigations may be useful in predicting the properties of Bismuth ferrites for possible applications.


Multiferroics TB-mBJ Gibbs 2 code LSDA+ U first principles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



One of the authors, Mr. E. Sagar thanks Defense Research and Development Organization, Government of India, for sanctioning the funds (ERIP/ER/DG-NSM/990416702/M/01/1638) for undertaking this work.


  1. 1.
    M. Fiebig, Th Lottermoser, D. Fröhlich, A.V. Goltsev, and R.V. Pisarev, Nature 419, 818 (2002).CrossRefGoogle Scholar
  2. 2.
    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).CrossRefGoogle Scholar
  3. 3.
    M. Fiebig, V. Eremenko, and I. E. Chupis Kluwer (eds), in Proceedings of the 5th International Workshop on Magneto electric Interaction Phenomena in Crystals (Dordrecht, 2004).Google Scholar
  4. 4.
    G.A. Smolenskii and I.E. Chupis, Sov. Phys. Usp. 25, 475 (1982).CrossRefGoogle Scholar
  5. 5.
    H. Schmid, Ferroelectrics 162, 317 (1994).CrossRefGoogle Scholar
  6. 6.
    G. Catalan, J. F. Scott Adv. Mat. 21, 2463 (2009).CrossRefGoogle Scholar
  7. 7.
    K.Y. Yun, D. Ricinschi, T. Kanashima, M. Noda, and M. Okuyama, Jpn. J. Appl. Phys. 43, L647 (2004).CrossRefGoogle Scholar
  8. 8.
    T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, and S.W. Cheong, Science 324, 63 (2009). Scholar
  9. 9.
    A.Y. Kim, S.H. Han, H.W. Kang, H.G. Lee, J.S. Kim, and C.I. Cheon, Ceram. Int. 38, 397 (2012).CrossRefGoogle Scholar
  10. 10.
    K. Liu, H. Fan, P. Ren, and C. Yang, J. Alloys Compd. 509, 1901 (2011).CrossRefGoogle Scholar
  11. 11.
    D. Bensaid, N.E. Benkhettou, and A. Kourdassi, J. Mod. Phys. 2, 642 (2011).CrossRefGoogle Scholar
  12. 12.
    E. Sagar, R. Mahesh, N. Pavan Kumar, and P. Venugopal Reddy, J. Phys. Chem. Solids 110, 316 (2017).CrossRefGoogle Scholar
  13. 13.
    V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).CrossRefGoogle Scholar
  14. 14.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, an Augmented Plane Wave þ Local Orbitals Program for Calculating Crystal Properties (Wien: Karlheinz Schwarz Tech. Universitat Wien, 2001).Google Scholar
  15. 15.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  16. 16.
    J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, and K.M. Rabe, Phys. Rev. B 71, 014113 (2005).CrossRefGoogle Scholar
  17. 17.
    C. Mand and S. de Gironcoli, Phys. Rev. B. 71, 035105 (2005).CrossRefGoogle Scholar
  18. 18.
    V. Anisimov, I. Solovyev, M. Korotin, M. Czyzyk, and G. Sawatzky, Phys. Rev. B. 48, 16929 (1993).CrossRefGoogle Scholar
  19. 19.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B. 13, 5188 (1976).CrossRefGoogle Scholar
  20. 20.
    G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
  21. 21.
    M.A. Blanco, A. Martín Pendás, E. Francisco, J.M. Recio, and R. Franco, J. Mol. Struct. Theochem. 368, 245 (1996).CrossRefGoogle Scholar
  22. 22.
    R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, and J.F. Scott, Phys. Rev. B. 77, 014110 (2008).CrossRefGoogle Scholar
  23. 23.
    D. Ricinschi, K.-Y. Yun, and M. Okuyama, J. Phys. Condens. Matter 18, L97 (2006).CrossRefGoogle Scholar
  24. 24.
    D.C. Arnold, K.S. Knight, G. Catalan, S.A.T. Redfern, J.F. Scott, P. Lightfoot, and F.D. Morrison, Adv. Funct. Mater. 20, 1 (2010).CrossRefGoogle Scholar
  25. 25.
    W. Hetaba, P. Blaha, F. Tran, and P. Schattschneider, Phys. Rev. B 85, 205108 (2012).CrossRefGoogle Scholar
  26. 26.
    H. Wang, H.T. Huang, and B. Wang, Solid State Commun. 149, 1849 (2009).CrossRefGoogle Scholar
  27. 27.
    D.R. Penn, Phys. Rev. 128, 2093 (1962).CrossRefGoogle Scholar
  28. 28.
    A. Bouhemadou, R. Khenata, and F. Djabi, Solid State Sci. 11, 556 (2009).CrossRefGoogle Scholar
  29. 29.
    K. Liu, H. Fan, P. Ren, and C. Yang, J. Alloys Compd. 509, 1901 (2011).CrossRefGoogle Scholar
  30. 30.
    P. Chen, N.J. Podraza, X.S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, and D.G. Schlom, J. L. Musfeldt Appl. Phys. Letters 96, 131907 (2010).CrossRefGoogle Scholar
  31. 31.
    H. Dong, H. Liu, and S. Wang, J. Phys. D Appl. Phys. 46, 135102 (2013).CrossRefGoogle Scholar
  32. 32.
    P. Chen, N.J. Podraza, X.S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D.G. Schlom, and J.L. Musfeldt, Appl. Phys. Lett. 96, 131907 (2010).CrossRefGoogle Scholar
  33. 33.
    L. Qiang, H. Duo-Hui, C. Qi-Long, and W. Fan-Hou, Chin. Phys. B 22, 037101 (2013).CrossRefGoogle Scholar
  34. 34.
    Y. Wang, J.E. Saal, P. Wu, J. Wang, S. Shang, Z.-K. Liu, and L.-Q. Chen, Acta Mater. 59, 4229 (2011).CrossRefGoogle Scholar
  35. 35.
    R. Choithrani, M.N. Rao, S.L. Chaplot, N.K. Gaur, and R.K. Singh, New J. Phys. 11, 073041 (2009).CrossRefGoogle Scholar
  36. 36.
    A.T. Petit and P.L. Dulong, Annales de Chimie et de Physique 10, 395 (1819).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Vidya Jyothi Institute of TechnologyHyderabadIndia
  2. 2.Department of PhysicsOsmania UniversityHyderabadIndia

Personalised recommendations