Journal of Electronic Materials

, Volume 48, Issue 1, pp 536–541 | Cite as

Optimized Growth of Gallium Oxide Thin Films Using Different Synthesis Processes

  • Jorge Castillo
  • Roman Garcia-Perez
  • Hasina HuqEmail author


This paper investigates the optimized sputtering conditions for high quality gallium oxide (Ga2O3) thin films while maintaining a strong uniformity within a specific surface area. The research also analyzes the crystal structure and the morphology of gallium oxide (Ga2O3) thin films. We report a comprehensive investigation of two different types of Ga2O3 synthetization processes: (1) direct deposition using radio frequency (RF) magnetron sputter technique and (2) thermal oxidation of gallium nitride (GaN) samples. A detailed comparison is presented in terms of material characterization, surface analysis and electrical performance for each of the synthetization processes. X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and x-ray diffraction (XRD) are employed to study the gallium oxide (Ga2O3) epi-layers on each of the samples. Based on the analysis, Ga2O3 compound is found on all samples with a binding energy ranging from 21 eV to 21.38 eV. Depending on the synthetization process, the thickness varied from 20 nm to 100 nm for RF sputtering process and a maximum of ~ 400 nm for thermal oxidation method. Additionally, the observations revealed that Ga2O3 is formed on the surface, as well as inside the gallium nitride (GaN) film after thermal oxidation. Crystal features are observed on the surface of each of the samples after annealing treatment while XRD analysis showed the presence of the beta (β) polymorph for the annealed samples. After thorough characterization, radio frequency sputtering technique proved to be superior due to its higher purity level and ability to create polycrystalline structures by adding temperature during deposition.


Gallium oxide UHV RF magnetron sputtering thermal oxidation characterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the support received from National Science Foundation under PREM Grant No. DMR-1523577 ‘‘UTRGV-UMN Partnership for Fostering Innovation by Bringing Excellence in Research and Student Success’’. Also, to the UTRGV student and faculty Edgar Muñoz and Hilario Cortes for their technical assistant on XPS and SEM characterization. This project is supported in part by the National Science Foundation (NSF) under Grant No. 1229523, and by the US Army Research Office W911NF-14-1-0100.


  1. 1.
    R.F. Pierret, Semiconductor Device Fundamentals (Boston: Addison-Wesley Publishing Company, 1996).Google Scholar
  2. 2.
    F. Roccaforte, F. Giannazzo, F. Lucolano, J. Eriksson, M.H. Weng, and V. Raineri, Appl. Surf. Sci. 256, 5727 (2010).CrossRefGoogle Scholar
  3. 3.
    H.S. Oon and K.Y. Cheong, Mater. Sci. Semicond. Process. 16, 1217 (2013).CrossRefGoogle Scholar
  4. 4.
    B.G. Svensson, S.J. Pearton, and C. Jagadish, Semicond Semimet 88, 2 (2013).Google Scholar
  5. 5.
    R.G. Gordon, Mater. Res. Soc. 25, 52 (2000).CrossRefGoogle Scholar
  6. 6.
    P. Irvin, Y. Ma, D.F. Bogorin, C. Cen, C.W. Bark, C.M. Folkman, C.-B. Eom, and J. Levy, Nat. Photonics 4, 849 (2010).CrossRefGoogle Scholar
  7. 7.
    K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 5623 (2003).CrossRefGoogle Scholar
  8. 8.
    M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Phys. Status Solidi A 211, 21 (2014).CrossRefGoogle Scholar
  9. 9.
    S.-A. Lee, J.-Y. Hwang, J.-P. Kim, S.-Y. Jeong, and C.-R. Cho, Appl. Phys. Lett. 89, 182906 (2006).CrossRefGoogle Scholar
  10. 10.
    D.J. Fu, Y.H. Kwon, T.W. Kang, C.J. Park, K.H. Baek, H.Y. Cho, D.H. Shin, C.H. Lee, and K.S. Chung, Appl. Phys. Lett. 80, 446 (2002).CrossRefGoogle Scholar
  11. 11.
    X.-C. Wang, G.-C. Lim, H.-Y. Zheng, J.-L. Tan, W. Liu, and S.-J. Chua, Jpn. J. Appl. Phys. 42, 5638 (2003).CrossRefGoogle Scholar
  12. 12.
    Y. Kokubun, T. Abe, and S. Nakagomi, Phys. Status Solidi A 207, 1741 (2010).CrossRefGoogle Scholar
  13. 13.
    G.A. Battiston, R. Gerbasi, M. Porchia, R. Bertoncello, and F. Caccavale, Thin Solid Films 279, 115 (1996).CrossRefGoogle Scholar
  14. 14.
    R. Roy, V.G. Hill, and E.F. Osborn, J. Am. Chem. Soc. 74, 719 (1952).CrossRefGoogle Scholar
  15. 15.
    L. Li, W. Wei, and M. Behrens, Solid State Sci. 14, 971 (2012).CrossRefGoogle Scholar
  16. 16.
    S.I. Stepanov, V.I. Nikolaev, V.E. Bougrov, and A.E. Romanov, Rev. Adv. Mater. Sci. 44, 63 (2016).Google Scholar
  17. 17.
    S.-D. Lee, K. Akaiwa, and S. Fujita, Phys. Status Solidi 10, 1592 (2013).CrossRefGoogle Scholar
  18. 18.
    Y. Zhou, C. Ahyi, T. Isaacs, M. Bozack, C.C. Tin, J. Williams, M. Park, A. Cheng, J.H. Park, D.J. Kim, D. Wang, E.A. Preble, A. Hanser, and K. Evans, Solid State Electron. 52, 756 (2008).CrossRefGoogle Scholar
  19. 19.
    H.S. Oon and K.Y. Cheong, Mater. Chem. Phys. 137, 381 (2012).CrossRefGoogle Scholar
  20. 20.
    H.-D. Xiao, H.-L. Ma, C.-S. Xue, H.-Z. Zhuang, J. Ma, F.-J. Zong, and X.-J. Zhang, Mater. Chem. Phys. 101, 99 (2007).CrossRefGoogle Scholar
  21. 21.
    C.D. Wagner, D.A. Zatko, and R.H. Raymond, Anal. Chem. 52, 1445 (1980).CrossRefGoogle Scholar
  22. 22.
    H. Iwakuro, C. Tatsuyama, and S. Ichimura, Jpn. J. Appl. Phys. 21, 94 (1982).CrossRefGoogle Scholar
  23. 23.
    A. Pashutski and M. Folman, Surf. Sci. 216, 395 (1989).CrossRefGoogle Scholar
  24. 24.
    H.J. Lee, S.M. Kang, T.I. Shin, J.W. Shur, and D.H. Yoon, J. Ceram. Process. Res. 9, 180 (2008).Google Scholar
  25. 25.
    R. Carli and C.L. Bianchi, Appl. Surf. Sci. 74, 99 (1994).CrossRefGoogle Scholar
  26. 26.
    A. Navarro-Quezada, Z. Galazka, S. Alame, and N. Esser, Appl. Surf. Sci. 349, 368 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Jorge Castillo
    • 1
  • Roman Garcia-Perez
    • 1
  • Hasina Huq
    • 1
    Email author
  1. 1.Department of Electrical EngineeringThe University of Texas Rio Grande ValleyEdinburgUSA

Personalised recommendations