Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 107–121 | Cite as

Evaluating Creep Deformation in Controlled Microstructures of Sn-3Ag-0.5Cu Solder

  • Tianhong GuEmail author
  • Christopher M. Gourlay
  • T. Ben Britton
Open Access
TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
Part of the following topical collections:
  1. TMS2018 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder

Abstract

The reliability of solder joints is affected significantly by thermomechanical properties such as creep and thermal fatigue. In this work, the creep of directionally solidified (DS) Sn-3Ag-0.5Cu wt.% (SAC305) dog-bone samples (gauge dimension: 10 × 2 × 1.5 mm) with a controlled <110> or <100> fibre texture is investigated under constant load testing (stress level: ∼ 30 MPa) at a range of temperatures from 20°C to 200°C. Tensile testing is performed and the secondary creep strain rate and the localised strain gradient are studied by two-dimensional optical digital image correlation (2-D DIC). The dominating creep mechanisms and their temperature dependence are explored at the microstructural scale using electron backscatter diffraction (EBSD), which enables the understanding of the microstructural heterogeneity of creep mechanisms at different strain levels, temperatures and strain rates. Formation of subgrains and the development of recrystallization are observed with increasing strain levels. Differences in the deformation of β-Sn in dendrites and in the eutectic regions containing Ag3Sn and Cu6Sn5 are studied and related to changes in local deformation mechanisms.

Keywords

Pb-free solder creep microstructure evolution recrystallization 

Notes

Acknowledgments

TBB would like to thank the Royal Academy of Engineering for his research fellowship. CG would like to thank EPSRC (EP/M002241/11) for funding of his research fellowship. We would like to thank Nihon Superior for positive support and encouragement to conduct this work. We thank Dr. Sergey Belyakov and Ning Hou for support in the initial fabrication of the samples. The assistance of Te-Cheng Su in DIC studies is also gratefully acknowledged. We acknowledge the preliminary work of Grey Chen that supported the initial development of this project. The microscope and loading frame used to conduct these experiments was supported through funding from Shell Global Solutions and is provided as part of the Harvey Flower EM suite at Imperial.

Author Contributions

TG drafted the initial manuscript and conducted the experimental work. CG and TBB supervised the work equally. All authors contributed to the final manuscript.

Supplementary material

11664_2018_6744_MOESM1_ESM.avi (271.9 mb)
Supplementary material 1 (AVI 278456 kb)
11664_2018_6744_MOESM2_ESM.avi (428.9 mb)
Supplementary material 2 (AVI 439209 kb)
11664_2018_6744_MOESM3_ESM.avi (373.8 mb)
Supplementary material 3 (AVI 382753 kb)
11664_2018_6744_MOESM4_ESM.avi (184.1 mb)
Supplementary material 4 (AVI 188488 kb)
11664_2018_6744_MOESM5_ESM.pdf (677 kb)
Supplementary material 5 (PDF 677 kb)

References

  1. 1.
    H. Black, Environ. Health Perspect. 113, 683 (2005).CrossRefGoogle Scholar
  2. 2.
    R.J. Coyle, K. Sweatman, and B. Arfaei, JOM J. Miner. Met. Mater. Soc 67, 2394 (2015).CrossRefGoogle Scholar
  3. 3.
    W. Zhu, L. Xu, J.H. Pang, X. Zhang, E. Poh, Y. Sun, A.Y. Sun, C. Wang, and H. Tan, 58th Electronic Components and Technology Conference, 2008. ECTC 2008 (2008)Google Scholar
  4. 4.
    E.H. Wong, S. Seah, W. Van Driel, N. Owens, and Y.S. Lai, Microelectron. Reliab. 49, 139 (2009).CrossRefGoogle Scholar
  5. 5.
    T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, and B. Nandagopal, IEEE Trans. Compon. Packag. Technol. 31(2), 370 (2008)Google Scholar
  6. 6.
    T.R. Bieler, B. Zhou, L. Blair, A. Zamiri, P. Darbandi, F. Pourboghrat, T.K. Lee, and K.C. Liu, J. Electron. Mater. 41(2), 283 (2012)Google Scholar
  7. 7.
    K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C. Handwerker, J. Electron. Mater. 29(10), 1122 (2000)Google Scholar
  8. 8.
    C.K. Lin and D.Y. Chu, J. Mater. Sci. Mater. Electron. 16(6), 355 (2005)Google Scholar
  9. 9.
    N. Hiyoshi, Mech. Eng. J. 3(3), 16-00081 (2016)Google Scholar
  10. 10.
    Y. Kariya, T. Asai, and T. Suga, in Third International Conference on Experimental Mechanics and Third Conference of the Asian Committee on Experimental Mechanics (2005)Google Scholar
  11. 11.
    M. Mathew, H. Yang, S. Movva, and K. Murty, Metall. Mater. Trans. A. 36(1), 99 (2005)Google Scholar
  12. 12.
    T.W. Woo, M. Sakane, K. Kobayashi, H.C. Park, and K.-S. Kim, J. Microelectron. Packag. Soc. 17(3), 33 (2010)Google Scholar
  13. 13.
    R. Sidhu and N. Chawla, Metallurgical and Materials Transactions A. 39(2), 340 (2008)Google Scholar
  14. 14.
    R. Sidhu, X. Deng, and N. Chawla, Metall. Mater. Trans. A. 39(2), 349 (2008)Google Scholar
  15. 15.
    J.H. Pang, B. Xiong, and T. Low, in Proceedings of the 54th Electronic Components and Technology Conference, 2004 (2004)Google Scholar
  16. 16.
    P.T. Vianco, J.A. Rejent, and A.C. Kilgo, J. Electron. Mater. 33(11), 1389 (2004)Google Scholar
  17. 17.
    P.T. Vianco, J.A. Rejent, and A.C. Kilgo, J. Electron. Mater. 33(12), 1473 (2004)Google Scholar
  18. 18.
    S. Choi, J. Lee, F. Guo, T. Bieler, K. Subramanian, and J. Lucas, JOM J. Miner. Met. Mater. Soc. 53(6), 22 (2001)Google Scholar
  19. 19.
    A. Fahim, S. Ahmed, M.R. Chowdhury, J.C. Suhling, and P. Lall, in 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (2016)Google Scholar
  20. 20.
    M. Hasnine, J. Suhling, B. Prorok, M. Bozack, and P. Lall, Exp. Mech. 57(4), 603 (2017)Google Scholar
  21. 21.
    D. Herkommer, M. Reid, and J. Punch, J. Electron. Mater. 38(10), 2085 (2009)Google Scholar
  22. 22.
    K.O. Lee, J.W. Morris, and F. Hua, J. Electron. Mater. 42(3), 516 (2013)Google Scholar
  23. 23.
    L. Xu, W.B. Tang, Z.H. Zhu, Y.P. Wu, L.F. Ren, and Y. Yao, DEStech Trans. Eng. Technol. Res. (amme). (2017)Google Scholar
  24. 24.
    S. Mukherjee, P. Chauhan, M. Osterman, A. Dasgupta, and M. Pecht, J. Electron. Mater. 45(7), 3712 (2016)Google Scholar
  25. 25.
    T. Ogawa, R. Kaga, and T. Ohsawa, J. Electron. Mater. 34(3), 311 (2005)Google Scholar
  26. 26.
    Q.K. Zhang and Z.F. Zhang, Acta Materialia. 59(15), 6017 (2011)Google Scholar
  27. 27.
    Q.K. Zhang and Z.F. Zhang, Scripta Materialia. 67(3), 289 (2012)Google Scholar
  28. 28.
    B. Talebanpour, U. Sahaym, and I. Dutta, IEEE Trans. Dev. Mater. Reliab. 16(3), 318 (2016)Google Scholar
  29. 29.
    A.A. El-Daly, A.M. El-Taher, and T.R. Dalloul, J. Alloys Compd. 587, 32 (2014).CrossRefGoogle Scholar
  30. 30.
    X. Chen, J. Zhou, F. Xue, and Y. Yao, Mater. Sci. Eng. A 662, 251 (2016).CrossRefGoogle Scholar
  31. 31.
    C.R. Mayer, S. Lotfian, J. Molina-Aldareguia, and N. Chawla, Adv. Eng. Mater. 17(8), 1168 (2015)Google Scholar
  32. 32.
    J. Han, J. Sun, T. Wen, and F. Guo, J. Mater. Sci. Mater. Electron. 1 (2018)Google Scholar
  33. 33.
    T.R. Bieler and A.U. Telang, J. Electron. Mater. 38(12), 2694 (2009)Google Scholar
  34. 34.
    B. Arfaei, S. Mahin-Shirazi, S. Joshi, M. Anselm, P. Borgesen, E. Cotts, J. Wilcox, and R. Coyle, in 2013 IEEE 63rd Electronic Components and Technology Conference (ECTC) (2013)Google Scholar
  35. 35.
    J. Han, S. Tan, and F. Guo, J. Electron. Mater. 45(12), 6086 (2016)Google Scholar
  36. 36.
    S. Tan, J. Han, and F. Guo, J. Electron. Mater. 47(7), 4156 (2018)Google Scholar
  37. 37.
    Y. Zuo, T.R. Bieler, Q. Zhou, L. Ma, and F. Guo, J. Electron. Mater. 47(3), 1881 (2018)Google Scholar
  38. 38.
    I. Anderson, B. Cook, J. Harringa, and R. Terpstra, JOM J. Miner. Met. Mater. Soc. 54(6), 26 (2002)Google Scholar
  39. 39.
    B. Arfaei, N. Kim, and E. Cotts, J. Electron. Mater. 41(2), 362 (2012)Google Scholar
  40. 40.
    C. Gourlay, S. Belyakov, Z. Ma, and J. Xian, JOM J. Miner. Met. Mater. Soc. 67(10), 2383 (2015)Google Scholar
  41. 41.
    T.K. Lee, B. Zhou, L. Blair, K.C. Liu, and T.R. Bieler, J. Electron. Mater. 39(12), 2588 (2010)Google Scholar
  42. 42.
    Z. Ma, S. Belyakov, K. Sweatman, T. Nishimura, and C. Gourlay, Nat. Commun. 8(1), 1916 (2017)Google Scholar
  43. 43.
    L.P. Lehman, Y. Xing, T.R. Bieler, and E.J. Cotts, Acta Materialia. 58(10), 3546 (2010)Google Scholar
  44. 44.
    J. Xian, Z. Ma, S. Belyakov, M. Ollivier, and C. Gourlay, Acta Mater. 123, 404 (2017).CrossRefGoogle Scholar
  45. 45.
    S. Yang, Y. Tian, and C. Wang, J. Mater. Sci. Mater. Electron. 21(11), 1174 (2010)Google Scholar
  46. 46.
    J. Han and F. Guo, J. Mater. Sci. Mater. Electron. 1 (2018)Google Scholar
  47. 47.
    R.J. Schaefer and D.J. Lewis, Metall. Mater. Trans. A. 36(10), 2775 (2005)Google Scholar
  48. 48.
    P.D. Pereira, J.E. Spinelli, and A. Garcia, Mater. Des. 45, 377 (2013).CrossRefGoogle Scholar
  49. 49.
    N. Hou, S. Belyakov, L. Pay, A. Sugiyama, H. Yasuda, and C. Gourlay, Acta Mater. 149, 119 (2018).CrossRefGoogle Scholar
  50. 50.
    J. Jiang, T. Zhang, F.P. Dunne, and T.B. Britton, Proc. R. Soc. A. 472(2185), 20150690 (2016)Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MaterialsImperial College LondonLondonUK

Personalised recommendations