Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 560–570 | Cite as

Efficient Use of Low-Bandgap GaAs/GaSb to Convert More than 50% of Solar Radiation into Electrical Energy: A Numerical Approach

  • G. S. Sahoo
  • G. P. MishraEmail author
Article
  • 24 Downloads

Abstract

A recent trend in photovoltaic technology is to aim to enhance the conversion efficiency of this energy harvesting technique. Although multijunction solar cells offer high efficiency, factors such as fabrication cost, cost per watt of energy produced, etc. limit their application. An alternative approach based on a lower-bandgap GaAs/GaSb dual-junction solar cell is proposed herein. For efficient use of longer wavelengths of the solar spectrum, a model for a simple antireflection coating (ARC)-less GaAs/GaSb dual-junction cell with a double back-surface field layer was optimized. The model was simulated using the Silvaco ATLAS technology computer-aided design (TCAD) tool and validated based on parameters such as the quantum efficiency, photogeneration rate, and spectral response. The model predicts conversion efficiency of 54%, better than some reported experimental results.

Keywords

Tandem cell quantum efficiency spectral response efficiency ATLAS fill factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Tanabe, Energies 2, 504 (2009).CrossRefGoogle Scholar
  2. 2.
    A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley: Southern Gate, 2003).CrossRefGoogle Scholar
  3. 3.
    S.J. Fonash, Solar Cell Device Physics, 2nd ed. (Burlington: Academic, 2010).Google Scholar
  4. 4.
    J. M. Roman, in Advanced Photovoltaic Cell Design, EN548 (2004), pp. 1–8.Google Scholar
  5. 5.
    W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).CrossRefGoogle Scholar
  6. 6.
    R. Szweda, I.I.I.-V. Rev. 14, 50 (2001).Google Scholar
  7. 7.
    J.M. Olson, D.J. Friedman, and S. Kurtz, High-Efficiency III–V Multijunction Solar Cells, in Handbook of Photovoltaic Science and Engineering, 1st ed., A. Luque, S. Hegedus, Eds.; Wiley: New York, NY, USA, (2003) Chapter 9, pp. 359–411.Google Scholar
  8. 8.
    M. McGehee, Emerging High-Efficiency Low-Cost Solar Cell Technologies. (Online document).Google Scholar
  9. 9.
    R. Szweda, Adv. Semicond. Mag. 16, 53 (2003).Google Scholar
  10. 10.
    M. Yamaguchi, Energy Procedia 15, 265 (2012).CrossRefGoogle Scholar
  11. 11.
    M. Yamaguchi, Phys. Status Solidi C 12, 489 (2015).CrossRefGoogle Scholar
  12. 12.
    A.D. Vos, J. Phys. D Appl. Phys. 13, 839 (1980).CrossRefGoogle Scholar
  13. 13.
    M. Yamaguchi, Renew. Energy 8, 354 (1996).CrossRefGoogle Scholar
  14. 14.
    M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, Sol. Energy 79, 78 (2005).CrossRefGoogle Scholar
  15. 15.
    M.A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovolt. Res. Appl. 17, 85 (2009).CrossRefGoogle Scholar
  16. 16.
    T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, Appl. Phys. Lett. 70, 381 (1997).CrossRefGoogle Scholar
  17. 17.
    I. Garcia, I. Rey-Stolle, B. Galiana, and C. Algora, Appl. Phys. Lett. 94, 053509-1 (2009).Google Scholar
  18. 18.
    L.M. Fraas, J.E. Avery, V.S. Sundaram, V.T. Kinh, T.M. Davenport, J.W. Yerkes, J.M. Gee, and K.A. Emery, in Proceedings of the 21st IEEE Photovoltaic Specialists Conference, Kissimimee, FL, USA (1990), 190–195.Google Scholar
  19. 19.
    G.S. Sahoo and G.P. Mishra, Opt. Quant. Electron. 48, 420 (2016).CrossRefGoogle Scholar
  20. 20.
    G.S. Sahoo, P.P. Nayak, and G.P. Mishra, Superlattices Microstruct. 95, 115 (2016).CrossRefGoogle Scholar
  21. 21.
    G.S. Sahoo and G.P. Mishra, Procedia Technol. 25, 684 (2016).CrossRefGoogle Scholar
  22. 22.
    K.W.A. Chee and Y. Hu, Superlattices Microstruct. 119, 25 (2018).CrossRefGoogle Scholar
  23. 23.
    G.S. Sahoo and G.P. Mishra, Mater. Lett. 218, 139 (2018).CrossRefGoogle Scholar
  24. 24.
    K.W.A. Chee, Z. Tang, H. Lu, and F. Huang, Energy Rep. 4, 266 (2018).CrossRefGoogle Scholar
  25. 25.
    T. Takamoto, H. Washio, and H. Juso, in Proceedings of 40th IEEE Photovoltaic Specialists Conference. New York (2014), pp. 1–5.Google Scholar
  26. 26.
    M. Steiner, G. Siefer, T. Schmidt, M. Wiesenfarth, F. Dimroth, and A.W. Bett, IEEE J. Photovolt. 6, 1020 (2016).CrossRefGoogle Scholar
  27. 27.
    T.K.P. Luong, V.L. Thanh, A. Ghrib, M.E. Kurdi, and P. Boucaud, Adv. Nat. Sci.: Nanosci. Nanotechnol. 6, 015013-1 (2015).Google Scholar
  28. 28.
    L. Fraas, J. Avery, R. Ballantyne, and W. Daniels, III-Vs Rev. 12, 22 (1999).Google Scholar
  29. 29.
    I. Bhattacharya, and S.Y. Foo, in Proceedings of IEEE Southeast Conference, Hyatt Regency Jacksonville, FL, USA (2013), pp. 1–6.Google Scholar
  30. 30.
    F.H. Alharbi and S. Kais, Renew. Sustain. Energy Rev. 43, 1073 (2015).CrossRefGoogle Scholar
  31. 31.
    E.B. Elkenany, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 150, 15 (2015).CrossRefGoogle Scholar
  32. 32.
    A. Joullie, F.D. Anda, P. Salsac, and M. Mebarki, Rev. Phys. Appl. 19, 223 (1984).CrossRefGoogle Scholar
  33. 33.
    X. Xianbi, D. Wenhui, C. Xiulan, and L. Xianbo, Solar Energy Mater. Solar Cells 55, 313 (1998).CrossRefGoogle Scholar
  34. 34.
    P.P. Nayak, J.P. Dutta, and G.P. Mishra, Eng. Sci. Technol. Int. J. 18, 325 (2015).CrossRefGoogle Scholar
  35. 35.
    J.P. Dutta, P.P. Nayak, and G.P. Mishra, Optik 127, 4156 (2016).CrossRefGoogle Scholar
  36. 36.
    B.C. Juang, R.B. Laghumavarapu, B.J. Foggo, P.J. Simmonds, A. Lin, B. Liang, and D.L. Huffaker, Appl. Phys. Lett. 106, 111101-1 (2015).CrossRefGoogle Scholar
  37. 37.
    J.W. Leem, Y.T. Lee, and J.S. Yu, Opt. Quantum Electron. 41, 605 (2009).CrossRefGoogle Scholar
  38. 38.
    I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).CrossRefGoogle Scholar
  39. 39.
    SILVACO Data Systems Inc., Silvaco ATLAS User’s Manual (2010).Google Scholar
  40. 40.
    R.E. Morrison, Phys. Rev. 124, 1314 (1961).CrossRefGoogle Scholar
  41. 41.
    D.E. Aspnes, S.M. Kelso, R.A. Logan, and R. Bhat, J. Appl. Phys. 60, 754 (1986).CrossRefGoogle Scholar
  42. 42.
    S. Adachi, H. Kato, A. Moki, and K. Ohtsuka, J. Appl. Phys. 75, 478 (1994).CrossRefGoogle Scholar
  43. 43.
    H. Kato, S. Adachi, H. Nakanish, and K. Ohtsuka, Jpn. J. Appl. Phys. 33, 186 (1994).CrossRefGoogle Scholar
  44. 44.
    D.E. Aspnes and A.A. Studna, Phys. Rev. B. 27, 985 (1983)Google Scholar
  45. 45.
    G.S. Sahoo and G.P. Mishra, Superlattices Microstruct. 109, 794 (2017).CrossRefGoogle Scholar
  46. 46.
    K.N. Yaung, M. Vaisman, J. Lang, and M.L. Lee, Appl. Phys. Lett. 109, 032107 (2016).CrossRefGoogle Scholar
  47. 47.
    M. Vaisman, N. Jain, Q. Li, K.M. Lau, A.C. Tamboli, and E.L. Warren, in IEEE 44th Photovoltaic Specialists Conference (PVSC), Washington, DC (2017), pp. 1–4.Google Scholar
  48. 48.
    N. Jain and M.K. Hudait, IEEE J. Photovolt. 3, 528 (2013).CrossRefGoogle Scholar
  49. 49.
    I. Garcia, R.M. France, J.F. Geisz, W.E. McMahon, M.A. Steiner, and D.J. Friedman, in IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA (2015), pp. 1–3.Google Scholar
  50. 50.
    S.A. Ringel, J.A. Carlin, C.L. Andre, M.K. Hudait, M. Gonzalez, D.M. Wilt, E.B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E.A. Fitzgerald, and C.W. Leitz, Prog. Photovolt: Res. Appl. 10, 417 (2002).CrossRefGoogle Scholar
  51. 51.
    M. Yamaguchi, A. Yamamoto, and Y. Itoh, J. Appl. Phys. 59, 1751 (1986).CrossRefGoogle Scholar
  52. 52.
    Z. Han, C. NuoFu, W. Yu, Z.X. Wang, Y. Zhi Gang, S. Hui Wei, W.YanSuo, H. Tian Mao, B. Yi Ming, and F. Zhen, Sci. China Tech. Sci. 53, 2569 (2010).Google Scholar
  53. 53.
    E.A. Fitzgerald, Mater. Sci. Rep. 7, 87 (1991).CrossRefGoogle Scholar
  54. 54.
    J.A. Carlin, S.A. Ringel, A. Fitzgerald, and M. Bulsara, Sol. Energy Mater. Sol. Cells 66, 621 (2001).CrossRefGoogle Scholar
  55. 55.
    S.M. Vernon, S.P. Tobin, M.M. Al-Jassim, R.K. Ahrenkiel, K.M. Jones, and B.M. Keyes, in Proceedings of 21st IEEE Photovoltaic Specialists Conference, Kissimmee, FL, USA (1990), pp. 211–216.Google Scholar
  56. 56.
    M. Yamaguchi, A. Yamamoto, and Y. Itoh, J. Appl. Phys. 59, 1751 (1986).CrossRefGoogle Scholar
  57. 57.
    M. Yamaguchi, C. Amano, and Y. Itoh, J. Appl. Phys. 66, 915 (1989).CrossRefGoogle Scholar
  58. 58.
    C.L. Andre, D.M. Wilt, A.J. Pitera, M.L. Lee, E.A. Fitzgerald, and S.A. Ringel, J. Appl. Phys. 98, 014502 (2005).CrossRefGoogle Scholar
  59. 59.
    J.C. Zolper and A.M. Barnett, IEEE Trans. Electron Devices 37, 478 (1990).CrossRefGoogle Scholar
  60. 60.
    Online document, Available: http://energyprofessionalsymposium.com/?p=6031. Accessed 11 Jan 2018.
  61. 61.
    S.H. Huynh, M.T.H. Ha, H.B. Do, Q.H. Luc, H.W. Yu, and E.Y. Chang, Appl. Phys. Lett. 109, 102107 (2016).CrossRefGoogle Scholar
  62. 62.
    A. Jallipalli, G. Balakrishnan, S.H. Huang, T.J. Rotter, K. Nunna, B.L. Liang, L.R. Dawson, and D.L. Huffaker, Nanoscale Res. Lett. 4, 1458 (2009).CrossRefGoogle Scholar
  63. 63.
    G.T. Nelson, B.C. Juang, M.A. Slocum, Z.S. Bittner, R.B. Laghumavarapu, D.L. Huffaker, and S.M. Hubbard, Appl. Phys. Lett. 111, 231104 (2017).CrossRefGoogle Scholar
  64. 64.
    A. Mansoori, S.J. Addamane, E.J. Renteria, D.M. Shima, M. Behzadirad, E. Vadiee, C. Honsberg, and G. Balakrishnan, Solar Energy Mater. Solar Cells 185, 21 (2018).CrossRefGoogle Scholar
  65. 65.
    D. Benyahia, L. Kubiszyn, K. Michalczewski, A. Keblowski, P. Martyniuk, J. Piotrowski, and A. Rogalski, Opto-Electron. Rev. 24, 40 (2016).CrossRefGoogle Scholar
  66. 66.
    S.H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L.R. Dawson, and D.L. Huffaker, Appl. Phys. Lett. 88, 131911 (2006).CrossRefGoogle Scholar
  67. 67.
    A. P. Kirk, Solar Photovoltaic Cells Photons to Electricity (Academic, Elsevier Inc. 2015).Google Scholar
  68. 68.
    L.M. Fraas, J.E. Avery, J. Martin, V.S. Sundaram, G. Girard, V.T. Dinh, T.M. Davenport, J.W. Yerkes, and M.J. O’Neill, IEEE Trans. Electron Devices 37, 443 (1990).CrossRefGoogle Scholar
  69. 69.
    M. Baudrit and C. Algora, in 33rd IEEE PVSC, San Diego, CA (2008), pp. 1–5.Google Scholar
  70. 70.
    A.W. Bett, S. Keser, G. Stollwerck, O.V. Sulima, and W. Wettling, in 26th PVSC, Anaheim, CA (1997), pp. 931–934.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Device Simulation Lab, Department of Electronics and Communication Engineering, Institute of Technical Education and ResearchSiksha ‘O’ Anusandhan Deemed to be UniversityKhandagiriIndia

Personalised recommendations