Journal of Electronic Materials

, Volume 48, Issue 1, pp 99–106 | Cite as

Wetting and IMC Growth Behavior Between Cu Substrate and Zn-25Sn-xCu-yTi High-Temperature Solder Alloys

  • Darwin Sarwono
  • Kwang-Lung Lin
TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
Part of the following topical collections:
  1. TMS2018 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder


One of the suitable candidates to replace conventional high-temperature Pb-containing solders is Zn-xSn solder alloy. However, its high Zn content may cause poor wettability. Addition of Cu and Ti has been proposed to improve the wettability of Zn-25Sn solder alloy. This study investigated the wetting and intermetallic compound (IMC) formation behavior between Zn-25Sn-xCu-yTi solder alloys (x = 0.1 wt.% to 0.3 wt.%, y = 0.01 wt.% to 0.03 wt.%) and Cu substrate. The wetting behavior was investigated using a wetting balance with flux at a temperature ∼ 40°C above the liquidus temperature of Zn-25Sn solder. The results indicated that combined addition of 0.3 wt.% Cu and 0.03 wt.% Ti gave rise to the best performance in terms of wetting time and wetting force. CuZn5 and Cu5Zn8 IMCs formed at the solder–Cu interface, with Cu5Zn8 being the predominant layer. Cu5Zn8 also grew much faster than CuZn5 with respect to dipping time. Combined addition of Cu and Ti also decreased the activation energy for Cu5Zn8 IMC formation in the Zn-25Sn system.


High-temperature lead-free solder zinc-tin alloy wetting time intermetallic compound 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.W. Gayle, G. Becka, J. Badgett, G. Whitten, T.Y. Pan, A. Grusd, B. Bauer, R. Lathrop, J. Slattery, I. Anderson, J. Foley, A. Gickler, D. Napp, J. Mather, and C. Olson, JOM 53, 17 (2001).CrossRefGoogle Scholar
  2. 2.
    S. Menon, E. George, M. Osterman, and M. Pecht, J. Mater. Sci.: Mater. Electron. 26, 4021 (2015).Google Scholar
  3. 3.
    G. Zeng, S. McDonald, and K. Nogita, Microelectron. Reliab. 52, 1306 (2012).CrossRefGoogle Scholar
  4. 4.
    V. Chidambaram, J. Hattel, and J. Hald, Microelectron. Eng. 88, 981 (2011).CrossRefGoogle Scholar
  5. 5.
    S. Cheng, C.M. Huang, and M. Pecht, Microelectron. Reliab. 75, 77 (2017).CrossRefGoogle Scholar
  6. 6.
    J.E. Lee, K.S. Kim, K. Suganuma, M. Inoue, and G. Izuta, Mater. Trans. 48, 584 (2007).CrossRefGoogle Scholar
  7. 7.
    D.Q. Yu, H.P. Xie, and L. Wang, J. Alloys Compd. 385, 119 (2004).CrossRefGoogle Scholar
  8. 8.
    W.C. Huang and K.L. Lin, J. Electron. Mater. 45, 6137 (2016).CrossRefGoogle Scholar
  9. 9.
    L. Zou, D. Lea, and C. Hunt, Solderabilty Testing of Surface Mount Components and PCB Pads (Delhi: National Physical Laboratory, 2004).Google Scholar
  10. 10.
    Y.T. Wang, C.J. Ho, and H.L. Tsai, Mater. Trans. 51, 1735 (2010).CrossRefGoogle Scholar
  11. 11.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams (Metals Park: ASM, 1986).Google Scholar
  12. 12.
    R. Mayappan and Z.A. Ahmad, Intermetallics 18, 730 (2010).CrossRefGoogle Scholar
  13. 13.
    M.C. Wang, S.P. Yu, T.C. Chang, and M.H. Hon, J. Alloys Compd. 389, 133 (2005).CrossRefGoogle Scholar
  14. 14.
    S.P. Yu, M.C. Wang, and M.H. Hon, J. Mater. Res. 16, 76 (2001).CrossRefGoogle Scholar
  15. 15.
    L.J. Liu, P. Wu, and W. Zhou, Microelectron. Reliab. 54, 259 (2014).CrossRefGoogle Scholar
  16. 16.
    R.R. Hultgren and A.S.F. Metals, Selected Values of Thermodynamic Properties of Binary Alloys. P.795-800 and P.810-822 (Metals Park: American Society for Metals, 1973).Google Scholar
  17. 17.
    S.W. Yoon, W.K. Choi, and H.M. Lee, Scripta Mater. 40, 327 (1999).CrossRefGoogle Scholar
  18. 18.
    W. Fu, X.G. Song, Y.X. Zhao, J. Cao, J.C. Feng, C. Jin, and G.D. Wang, Mater. Des. 115, 1 (2017).CrossRefGoogle Scholar
  19. 19.
    R. Sui, C. Ju, W. Zhong, and Q. Lin, J. Alloys Compd. 739, 616 (2018).CrossRefGoogle Scholar
  20. 20.
    G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, and J. Luo, J. Mater. Sci.: Mater. Electron. 21, 421 (2010).Google Scholar
  21. 21.
    Y. Yao, J. Zhou, F. Xue, and X. Chen, J. Alloys Compd. 682, 627 (2016).CrossRefGoogle Scholar
  22. 22.
    M. Schaefer, R.A. Fournelle, and J. Liang, J. Electron. Mater. 27, 1167 (1998).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering NationalCheng Kung University TainanTainanTaiwan, ROC

Personalised recommendations