Journal of Electronic Materials

, Volume 48, Issue 1, pp 231–237 | Cite as

Conductive Ink Prepared by Microwave Method: Effect of Silver Content on the Pattern Conductivity

  • Tinghao Du
  • Chengli TangEmail author
  • Bo Xing
  • Yebo Lu
  • Fengli HuangEmail author
  • Chuncheng Zuo


A facile one-step microwave approach was employed to synthesize silver nanoparticle (AgNP) conductive ink. The conductive ink contained multi-sized silver nanoparticles. Different particle size distribution can be obtained by adding different amounts of the silver source. The relationship between the conductivity of the direct written pattern using the as-prepared silver conductive ink, the particle packing morphology and the particle size distribution standard deviation was investigated. Among all the samples, conductive ink with a silver weight percentage of 10% can have an optimal electrical resistance of 98 μΩ cm after post-hot/pressure treatment at 100°C and 20 MPa for 10 min. The as-prepared conductive ink is of potential application in printed electronics because the sintering condition of low temperatures is feasible for most kinds of flexible substrate materials.


Conductive ink silver nanoparticles microwave electrical resistance printed electronics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work reported in this paper was financially supported by National Natural Science Foundation of China (61704067), (51775242), Science and Technology Innovation Program for College Students in Zhejiang Province (New Talent Program) (2018R417040), General Scientific Research Project of Zhejiang Education Department (Y201738195), and Key Project of Student Research Training of Jiaxing University (85171725).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11664_2018_6740_MOESM1_ESM.pdf (263 kb)
Supplementary material 1 (PDF 263 kb)


  1. 1.
    B. Wittbrodt and J.M. Pearce, Energy Sustain. Dev. 36, 1 (2017).CrossRefGoogle Scholar
  2. 2.
    H. Lee, H. Lim, S. Park, and D. Lee, Opt. Express 24, A1571 (2016).CrossRefGoogle Scholar
  3. 3.
    C.M. Homenick, R. James, G.P. Lopinski, J. Dunford, J.F. Sun, H. Park, Y. Jung, G. Cho, and P.R. Malenfant, ACS Appl. Mater. Inter 8, 27900 (2016).CrossRefGoogle Scholar
  4. 4.
    H.J. Kwon, S. Chung, J. Jang, and C.P. Grigoropoulos, Nanotechnology 27, 405301 (2016).CrossRefGoogle Scholar
  5. 5.
    Y.X. Gao, R. Liu, X.P. Wang, J. Liu, and Q.F. Fang, J. Electron. Packag 138, 031007 (2016).CrossRefGoogle Scholar
  6. 6.
    G.A. dos Reis Benatto, B. Roth, M. Corazza, R.R. Sondergaard, S.A. Gevorgyan, M. Jorgensen, and F.C. Krebs, Nanoscale 8, 318 (2016).CrossRefGoogle Scholar
  7. 7.
    L.H. Huang, P. Jiang, D. Wang, Y.F. Luo, M.F. Li, H. Lee, and R.A. Gerhardt, Sens. Actuator B-Chem 197, 308 (2014).CrossRefGoogle Scholar
  8. 8.
    M.D. Dankoco, G.Y. Tesfay, E. Benevent, and M. Bendanhan, Mater. Sci. Eng. B-Adv. 205, 1 (2016).CrossRefGoogle Scholar
  9. 9.
    J.H. Yu, S.Y. Kim, and J. Hwang, Appl. Phys. A 89, 157 (2007).CrossRefGoogle Scholar
  10. 10.
    F. Wang, P. Mao, and H. He, Sci. Rep. 6, 21398 (2016).CrossRefGoogle Scholar
  11. 11.
    B. Reiser, L. Gonzalez-Garcia, I. Kanelidis, J.H.M. Maurer, and T. Kraus, Chem. Sci. 7 (2016).Google Scholar
  12. 12.
    J. Ding, J. Liu, Q.Y. Tian, Z.H. Wu, W.J. Yao, Z.G. Dai, L. Liu, and W. Wu, Nanoscale Res. Lett. 11, 412 (2016).CrossRefGoogle Scholar
  13. 13.
    C.L. Tang, B. Xing, G.S. Hu, F.L. Huang, and C.C. Zuo, Mater. Lett. 188, 220 (2017).CrossRefGoogle Scholar
  14. 14.
    C.C. Furnas, Ind. Eng. Chem. 23, 1052 (1931).CrossRefGoogle Scholar
  15. 15.
    R.M. German, Metall. Trans. A 23, 1455 (1992).CrossRefGoogle Scholar
  16. 16.
    G.S. Hu, C.C. Zuo, F.L. Huang, C.L. Tang, and L.B. Zhang, Electron. Compon. Mater. 35, 71 (2016).Google Scholar
  17. 17.
    M. Randall, Sintering Theory and Practice, 1st ed. (New York: Wiley, 1996), pp. 384–426.Google Scholar
  18. 18.
    L.S.J. Kang, Sintering: Densification, Grain Growth, and Microstructure (Oxford: Elsevier, Butterworth-Heinemann, 2005), pp. 674–742.Google Scholar
  19. 19.
    R.M. German, Metall. Trans. A 23, 1455 (1992).CrossRefGoogle Scholar
  20. 20.
    K. Woo, D. Kim, J.S. Kim, S. Lim, and J. Moon, Langmuir 25, 429 (2009).CrossRefGoogle Scholar
  21. 21.
    P. Buffat, Thin Solid Films 32, 283 (1976).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.College of Mechanical and Electrical EngineeringJiaxing UniversityJiaxingPeople’s Republic of China

Personalised recommendations