Advertisement

Re-nucleation and Etching of Graphene During the Cooling Stage of Chemical Vapor Deposition

  • Yijian Liang
  • Yanhui Zhang
  • Zhiyin Chen
  • Xiaoming Ge
  • Shike Hu
  • Jing Li
  • Yanping Sui
  • Guanghui Yu
Article
  • 16 Downloads

Abstract

Graphene growth on copper foil via chemical vapor deposition (CVD) is extensively used because the low carbon solubility of Cu leads to uniform, single-layer graphene formation. However, re-nucleation and etching, which dramatically weaken the quality of graphene, occur in some cooling conditions. CVD graphene growth on Cu is influenced by the cooling stage. In this work, the role of cooling in CVD graphene domain growth on Cu foil was studied, and the effects of cooling rate and atmosphere on the growth of graphene during the cooling stage were investigated. The re-nucleation and etching of graphene domains were observed in some cooling processes. These phenomena occur due to the processes related with the varying cooling rate and hydrogen (H2) and methane (CH4) concentrations in the reactor.

Keywords

Graphene chemical vapor deposition Cu cooling re-nucleation etching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (No. 51402342).

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  2. 2.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  3. 3.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, Nature 446, 60 (2007).CrossRefGoogle Scholar
  4. 4.
    U. Stöberl, U. Wurstbauer, W. Wegscheider, D. Weiss, and J. Eroms, Appl. Phys. Lett. 93, 051906 (2008).CrossRefGoogle Scholar
  5. 5.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Science 320, 1308 (2008).CrossRefGoogle Scholar
  6. 6.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).CrossRefGoogle Scholar
  7. 7.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev Mod Phys 81, 109 (2009).CrossRefGoogle Scholar
  8. 8.
    J.H. Chen, C. Jang, M. Ishigami, S. Xiao, W.G. Cullen, E.D. Williams, and M.S. Fuhrer, Solid State Commun. 149, 1080 (2009).CrossRefGoogle Scholar
  9. 9.
    M.H. Griep, E. Sandoz-Rosado, T.M. Tumlin, and E. Wetzel, Nano Lett. 16, 1657 (2016).CrossRefGoogle Scholar
  10. 10.
    Y.F. Hao, L. Wang, Y.Y. Liu, H. Chen, X.H. Wang, C. Tan, S. Nie, J.W. Suk, T.F. Jiang, T.F. Liang, J.F. Xiao, W.J. Ye, C.R. Dean, B.I. Yakobson, K.F. McCarty, P. Kim, J. Hone, L. Colombo, and R.S. Ruoff, Nat. Nanotechnol. 11, 426 (2016).CrossRefGoogle Scholar
  11. 11.
    G.H. Han, F. Gunes, J.J. Bae, E.S. Kim, S.J. Chae, H.J. Shin, J.Y. Choi, D. Pribat, and Y.H. Lee, Nano Lett. 11, 4144 (2011).CrossRefGoogle Scholar
  12. 12.
    X.Z. Xu, Z.H. Zhang, J.C. Dong, D. Yi, J.J. Niu, M.H. Wu, L. Lin, R.K. Yin, M.Q. Li, J.Y. Zhou, S.X. Wang, J.L. Sun, X.J. Duan, P. Gao, Y. Jiang, X.S. Wu, H.L. Peng, R.S. Ruoff, Z.F. Liu, D.P. Yu, E.G. Wang, F. Ding, and K.H. Liu, Sci. Bull. 62, 1074 (2017).CrossRefGoogle Scholar
  13. 13.
    M. Losurdo, M.M. Giangregorio, P. Capezzuto, and G. Bruno, Phys. Chem. Chem. Phys. 13, 20836 (2011).CrossRefGoogle Scholar
  14. 14.
    X.S. Li, C.W. Magnuson, A. Venugopal, J.H. An, J.W. Suk, B.Y. Han, M. Borysiak, W.W. Cai, A. Velamakanni, Y.W. Zhu, L.F. Fu, E.M. Vogel, E. Voelkl, L. Colombo, and R.S. Ruoff, Nano Lett. 10, 4328 (2010).CrossRefGoogle Scholar
  15. 15.
    S. Bhaviripudi, X.T. Jia, M.S. Dresselhaus, and J. Kong, Nano Lett. 10, 4128 (2010).CrossRefGoogle Scholar
  16. 16.
    I. Vlassiouk, M. Regmi, P.F. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, ACS Nano 5, 6069 (2011).CrossRefGoogle Scholar
  17. 17.
    H.R. Zhang, Y.H. Zhang, B. Wang, Z.Y. Chen, Y.P. Sui, Y.Q. Zhang, C.M. Tang, B. Zhu, X.M. Xie, G.H. Yu, Z. Jin, and X.Y. Liu, J. Electron. Mater. 44, 79 (2015).CrossRefGoogle Scholar
  18. 18.
    X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, Science 324, 1312 (2009).CrossRefGoogle Scholar
  19. 19.
    X.S. Li, W.W. Cai, L. Colombo, and R.S. Ruoff, Nano Lett. 9, 4268 (2009).CrossRefGoogle Scholar
  20. 20.
    X. Ge, Y. Zhang, Z. Chen, Y. Liang, S. Hu, Y. Sui, G. Yu, S. Peng, Z. Jin, and X. Liu, Phys. Chem. Chem. Phys. 20, 15419 (2018).CrossRefGoogle Scholar
  21. 21.
    K.L. Xia, V.I. Artyukhov, L.F. Sun, J.Y. Zheng, L.Y. Jiao, B.I. Yakobson, and Y.Y. Zhang, Nano Res. 9, 2182 (2016).CrossRefGoogle Scholar
  22. 22.
    K. Xiao, H. Wu, H. Lv, X. Wu, and H. Qian, Nanoscale 5, 5524 (2013).CrossRefGoogle Scholar
  23. 23.
    M.R. Anisur, P. Chakraborty Banerjee, C.D. Easton, and R.K. Singh Raman, Carbon 127, 131 (2018).CrossRefGoogle Scholar
  24. 24.
    J. Seo, J. Lee, A.R. Jang, Y. Choi, U. Kim, H.S. Shin, and H. Park, Chem. Mater. 29, 4202 (2017).CrossRefGoogle Scholar
  25. 25.
    D.S. Choi, K.S. Kim, H. Kim, Y. Kim, T. Kim, S.H. Rhy, C.M. Yang, D.H. Yoon, and W.S. Yang, ACS Appl. Mater. Interfaces 6, 19574 (2014).CrossRefGoogle Scholar
  26. 26.
    X.M. Ge, Y.H. Zhang, Z.Y. Chen, H.R. Zhang, L. He, Y.P. Sui, R.X. Deng, and G.H. Yu, Mater. Lett. 185, 156 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yijian Liang
    • 1
    • 2
    • 3
  • Yanhui Zhang
    • 1
    • 2
  • Zhiyin Chen
    • 1
    • 2
  • Xiaoming Ge
    • 1
    • 2
    • 3
  • Shike Hu
    • 1
    • 2
    • 3
  • Jing Li
    • 1
    • 2
    • 3
  • Yanping Sui
    • 1
    • 2
  • Guanghui Yu
    • 1
    • 2
  1. 1.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiPeople’s Republic of China
  2. 2.CAS Center for Excellence in Superconducting ElectronicsShanghaiPeople’s Republic of China
  3. 3.University of Chinese Academy of ScienceBeijingPeople’s Republic of China

Personalised recommendations