Journal of Electronic Materials

, Volume 48, Issue 1, pp 542–550 | Cite as

HRGO–Co@SnO2 Nanocomposite for Electrochemical Detection of Hydrazine

  • Subramanian Ramanathan
  • Elaiyappillai Elanthamilan
  • Asir Obadiah
  • Arulappan Durairaj
  • Palanisamy SanthoshKumar
  • Johnson Princy Merlin
  • Subramanian Ramasundaram
  • Samuel VasanthkumarEmail author


A low-cost modified electrode using bimetallic nanoparticles (Co@SnO2) and honey reduced graphene oxide (HRGO) has been developed for detecting trace amounts of hydrazine. The HRGO and Co@SnO2 nanoparticles were prepared using a natural reducing agent, honey. The synthesized nanoparticles and nanocomposite (HRGO–Co@SnO2) were characterized by Fourier transform infrared (FT-IR) spectroscopy, x-ray diffraction (XRD) studies, scanning electron microscopy (SEM) and Energy dispersive spectroscopic analysis (EDA). The electrocatalytic ability of the modified glassy carbon electrode (GCE) to detect hydrazine was investigated. The modified electrode exhibited a wide linear range of (050 μL) to detect hydrazine and had a low detection limit of 10 μL. This modified electrode had superior sensing performance compared to previously reported electrodes and also exhibited good repeatability, reproducibility, stability and ease of operation.

Graphical Abstract


Hydrazine honey reduced graphene oxide bimetallic nanoparticles honey 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank the Management and Administration of Karunya University for their support and help. The authors are grateful to the Department of Science and Technology, Govt. of India, for their financial support.


  1. 1.
    H. Jrah-Harzallah, S. Ben-Hadj-Khalifa, Y.W. Almawi, A. Maaloul, Z. Houas, and T. Mahjoub, Eur. J. Cancer 49, 1127 (2013).CrossRefGoogle Scholar
  2. 2.
    Y.H. Kao, C.H. Chong, W.T. Ng, and D. Lim, Occup. Med. 57, 535 (2007).CrossRefGoogle Scholar
  3. 3.
    J.K. Niemeier and D.P. Kjell, Org. Process Res. Dev. 17, 1580 (2013).CrossRefGoogle Scholar
  4. 4.
    X. Gu and J.P. Camden, Anal. Chem. 87, 6460 (2015).CrossRefGoogle Scholar
  5. 5.
    D.S. Kosyakov, N.V. Ul’yanovskiia, K.G. Bogolitsyna, and O.A. Shpigun, Int. J. Environ. Anal. Chem. 94, 1254 (2014).CrossRefGoogle Scholar
  6. 6.
    S.E.F. Kleijn, B. Serrano-Bou, A.I. Yanson, and M.T.M. Koper, Langmuir 29, 2054 (2013).CrossRefGoogle Scholar
  7. 7.
    R. Baron, B. Šljukic, C. Salter, A. Crossley, and R.G. Compton, Electroanalysis 19, 1062 (2007).CrossRefGoogle Scholar
  8. 8.
    C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, and P.P. Edwards, Chem. Eur. J. 8, 28 (2002).CrossRefGoogle Scholar
  9. 9.
    Y.C. Lu, Z. Xu, H.A. Gasteiger, S. Chen, K. Hamad-Schifferli, and Y. Shao-Horn, J. Am. Chem. Soc. 132, 12170 (2010).CrossRefGoogle Scholar
  10. 10.
    C.C. Li, W. Zhang, H. Ang, H. Yu, B.Y. Xia, X. Wang, Y.H. Yang, Y. Zhao, H.H. Hng, and Q. Yan, J. Mater. Chem. A 2, 10676 (2014).CrossRefGoogle Scholar
  11. 11.
    R. Gupta and V. Ganesan, Sens. Actuators, B 219, 139 (2015).CrossRefGoogle Scholar
  12. 12.
    M.F. Othman, A.R. Bushroa, and W.N.R. Abdullah, J. Adhes. Sci. Technol. 29, 569 (2015).CrossRefGoogle Scholar
  13. 13.
    C. Osorio-Cantillo, A.N. Santiago-Miranda, O. Perales-Perez, and Y. Xin, J. Appl. Phy. 111, 07B324 (2012).CrossRefGoogle Scholar
  14. 14.
    M. Nasiri and S.A. Hassanzadeh-Tabrizi, J. Chin. Chem. Soc. 65, 231 (2018).CrossRefGoogle Scholar
  15. 15.
    Y. Huang, J. Liang, and Y. Chen, J. Mater. Chem. 22, 3671 (2012).CrossRefGoogle Scholar
  16. 16.
    M. Zhao, L. Sun, and R.M. Crooks, J. Am. Chem. Soc. 120, 4877 (1998).CrossRefGoogle Scholar
  17. 17.
    F.B. Su, J.H. Zeng, X.Y. Bao, Y.S. Yu, J.Y. Lee, and X.S. Zhao, Chem. Mater. 17, 3960 (2005).CrossRefGoogle Scholar
  18. 18.
    Y.J. Li, W. Gao, L.J. Ci, C.M. Wang, and P.M. Ajayan, Carbon 48, 1124 (2010).CrossRefGoogle Scholar
  19. 19.
    A. Chavez-Valdez, M.S.P. Shaffer, and A.R. Boccaccini, J. Phys. Chem. B 117, 1502 (2013).CrossRefGoogle Scholar
  20. 20.
    P. Solis-Fernandez, M. Bissett, and H. Ago, Chem. Soc. Rev. 46, 4572 (2017).CrossRefGoogle Scholar
  21. 21.
    M. Acik and J.Y. Chabal, Mater. Sci. Res. 2, 101 (2013).Google Scholar
  22. 22.
    Y. Si and T. Samulski, Nano Lett. 8, 1679 (2008).CrossRefGoogle Scholar
  23. 23.
    C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, and N. Liu, Langmuir 25, 12030 (2009).CrossRefGoogle Scholar
  24. 24.
    T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, and J.H. Lee, Carbon 50, 914 (2012).CrossRefGoogle Scholar
  25. 25.
    S. Ramanathan, E. Elanthamilan, A. Obadiah, A. Durairaj, J.P. Merlin, S. Ramasundaram, and S. Vasanthkumar, J. Mater. Sci.: Mater. Electron. (2017). Scholar
  26. 26.
    R.K. Upadhyay, N. Soin, G. Bhattacharya, S. Saha, A. Barman, and S.S. Roy, Mater. Lett. 160, 355 (2015).CrossRefGoogle Scholar
  27. 27.
    S. Thakur and N. Karak, Carbon 50, 5331 (2012).CrossRefGoogle Scholar
  28. 28.
    J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, Chem. Commun. 46, 1112 (2010).CrossRefGoogle Scholar
  29. 29.
    S. Ahmed and N.H. Othman, Evid Based Complement. Altern. Med. (2013). Scholar
  30. 30.
    C. Sreelakshmi, K.K.R. Datta, J.S. Yadav, and B.V. Subba Reddy, J. Nanosci. Nanotechnol. 11, 6995 (2011).CrossRefGoogle Scholar
  31. 31.
    T.M.S. Silva, F.P. dos Santos, A. Evangelista-Rodrigues, E.M.S. da Silva, G.S. da Silva, J.S. de Novais, F.D.A.R. dos Santos, and C.A. Camara, J. Food Compos. Anal. 29, 10 (2013).CrossRefGoogle Scholar
  32. 32.
    S.W. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc. 80 (6), 1339 (1958).CrossRefGoogle Scholar
  33. 33.
    I.K. Moon, J. Lee, R.S. Ruoff, and H. Lee, Nat. Commun. 1, 73 (2010).CrossRefGoogle Scholar
  34. 34.
    M.M. Rahman, S.B. Khan, M. Faisal, M.A. Rub, A.O. Al-Youbi, and A.M. Asiri, Talanta 99, 924 (2012).CrossRefGoogle Scholar
  35. 35.
    C. Chen, L. Jing, L. Run, G. Xiao, and D. Yan, New J. Chem. 37, 2778 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Subramanian Ramanathan
    • 1
  • Elaiyappillai Elanthamilan
    • 2
  • Asir Obadiah
    • 1
  • Arulappan Durairaj
    • 1
  • Palanisamy SanthoshKumar
    • 1
  • Johnson Princy Merlin
    • 2
  • Subramanian Ramasundaram
    • 3
  • Samuel Vasanthkumar
    • 1
    Email author
  1. 1.Department of ChemistryKarunya UniversityCoimbatoreIndia
  2. 2.Department of ChemistryBishop Heber CollegeTiruchirappalliIndia
  3. 3.Department of Printed Electronics EngineeringSunchon National UniversitySunchonRepublic of Korea

Personalised recommendations