Journal of Electronic Materials

, Volume 48, Issue 1, pp 509–516 | Cite as

Beneficial Effect of Two-Step Annealing via Low Temperature of Vacancy Complexes in N-type Czochralski Silicon

  • Mohamed Hannachi
  • Chohdi Amri
  • Hachem Hedfi
  • Ahmed ZarrougEmail author
  • Hatem Ezzaouia


We report a simple, time-saving and effective low-temperature approach to avoid the effect of intrinsic defects in n-type Czochralski silicon (Cz-Si) wafers. This approach consists of submitting Cz-Si wafers to two annealing steps. The first annealing step was conducted in the temperature range 100–200°C to dissociate phosphorus–vacancy (P-V) defects. These defects were identified through the calculation of its activation energy (Ea) of annihilation. The second annealing step was conducted in the temperature range 300–400°C to eliminate defects caused by vacancy–oxygen (V-O) pairs. The deactivation effect of the V-O pairs was highlighted using Fourier transform infrared spectroscopy and the effective minority carrier lifetime (τeff). By combining these two annealing steps, we succeeded in enhancing τeff from 180 to 2400 μs and the electrical parameters of the silicon solar cell.


N-type Czochralski silicon minority carrier life time FTIR activation energy of annihilation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.E. Cotter, J.H. Guo, P.J. Cousins, M.D. Abbott, F.W. Chen, and K.C. Fisher, IEEE Trans. Electron Devices 53, 1893 (2006).CrossRefGoogle Scholar
  2. 2.
    J. Schmidt and A. Cuevas, J. Appl. Phys. 86, 3175 (1999).CrossRefGoogle Scholar
  3. 3.
    D. Macdonald and L.J. Geerligs, Appl. Phys. Lett. 85, 4061 (2004).CrossRefGoogle Scholar
  4. 4.
    J. Schmidta, R. Krain, and K. Bothe, J. Appl. Phys. 102, 123701 (2007).CrossRefGoogle Scholar
  5. 5.
    D. Macdonald, T. Rothb, and P.N.K. Deenapanray, Appl. Phys. Lett. 89, 142107 (2006).CrossRefGoogle Scholar
  6. 6.
    D. Macdonald, Appl. Phys. A 81, 1619 (2005).CrossRefGoogle Scholar
  7. 7.
    D. Macdonald, H. Mäckel, and A. Cuevas, Appl. Phys. Lett. 88, 092105 (2006).CrossRefGoogle Scholar
  8. 8.
    R. Sachdeva, A.A. Istratov, and E.R. Weber, Appl. Phys. Lett. 79, 2937 (2001).CrossRefGoogle Scholar
  9. 9.
    T. Sinno, E. Dornberger, W.V. Ammon, R.A. Brown, and F. Dupret, Mater. Sci. Eng. B 28, 149 (2000).CrossRefGoogle Scholar
  10. 10.
    B. Lim, K. Bothe, and J. Schmidt, J. Appl. Phys. 107, 123707 (2010).CrossRefGoogle Scholar
  11. 11.
    V.V. Voronkov, R. Falster, B. Lim, and J. Schmidt, J. Appl. Phys. 112, 113717-5 (2012).Google Scholar
  12. 12.
    G.D. Watkins and J.W. Corbett, Phys. Rev. A 134, 1359 (1964).CrossRefGoogle Scholar
  13. 13.
    A.Y. Liu, C. Sun, V.P. Markevich, A.R. Peaker, J.D. Murphy, and D. Macdonald, J. Appl. Phys. 120, 193103 (2016).CrossRefGoogle Scholar
  14. 14.
    J.D. Murphy, K. Bothe, R. Krain, V.V. Voronkov, and R.J. Falster, J. Appl. Phys. 111, 113709 (2012).CrossRefGoogle Scholar
  15. 15.
    G. Coletti, P. Manshanden, S. Bernardini, P.C.P. Bronsveld, A. Gutjahr, Z. Hu, and G. Li, Sol. Energy Mater. Sol. Cells 130, 647 (2014).CrossRefGoogle Scholar
  16. 16.
    C.A. Londos, N.V. Sarlis, L.G. Fytros, and K. Papastergiou, Phys. Rev. B 53, 6900 (1996).CrossRefGoogle Scholar
  17. 17.
    A. Chroneos, C.A. Londos, and E.N. Sgourou, J. Appl. Phys. 110, 093507 (2011).CrossRefGoogle Scholar
  18. 18.
    V.V. Voronkov and R. Falster, J. Appl. Phys. 91, 1 (2002).CrossRefGoogle Scholar
  19. 19.
    V.V. Voronkov, R. Falster, and C.A. Londos, J. Appl. Phys. 111, 113530 (2012).CrossRefGoogle Scholar
  20. 20.
    M.G. Ganchenkova, V.A. Borodin, and R.M. Nieminen, Nucl. Instrum. Meth. B 228, 218 (2005).CrossRefGoogle Scholar
  21. 21.
    B.D. Kiriya, N. Grant, A. Azcatl, M. Hettick, T. Kho, P. Phang, H.C. Sio, D. Yan, D. Macdonald, M.A. Quevedo-Lopez, R.M. Wallace, A. Cuevas, and A. Javey, ACS Appl. Mater. Interfaces 8, 24205 (2016).CrossRefGoogle Scholar
  22. 22.
    S. Cuevas, Appl. Phys. Lett. 69, 2510 (1996).CrossRefGoogle Scholar
  23. 23.
    B. Moumni, A. Ben Jaballah, S. Aouida, and B. Bessaïs, World J. Condens. Matter Phys. 2, 165 (2012).CrossRefGoogle Scholar
  24. 24.
    G.D. Watkins, Mater. Sci. Semicond. Process. 3, 227 (2000).CrossRefGoogle Scholar
  25. 25.
    J.W. Corbett, G.D. Watkins, R.M. Chrenko, and R.S. McDonald, Phys. Rev. 121, 1015 (1961).CrossRefGoogle Scholar
  26. 26.
    J.W. Corbett, G.D. Watkins, and R.S. McDonald, Phys. Rev. A 135, 1381 (1964).CrossRefGoogle Scholar
  27. 27.
    Y. Shuai, L. Yangxian, M. Qiaoyun, L. Lili, and X. Xuewen, J. Cryst. Growth 280, 60 (2005).CrossRefGoogle Scholar
  28. 28.
    J.L. Lindstrom, L.I. Murin, B.G. Svensson, V.P. Markevich, and T. Hallberg, Phys. B 340, 509 (2003).CrossRefGoogle Scholar
  29. 29.
    J.L. Lindstrom and B.G. Svensson, Mater. Res. Soc. Symp. Proc. 59, 45 (1986).CrossRefGoogle Scholar
  30. 30.
    J.L. Lindstrom, G. Oehrlejn, and J.W. Corbett, Phys. Stat. Sol. (a) 95, 179 (1986).CrossRefGoogle Scholar
  31. 31.
    J.L. Lindström, T. Hallberg, J. Hermansson, L. Murin, B. Komarov, V. Markevich, M. Kleverman, and B.G. Svensson, Phys. B 284, 308 (2001).Google Scholar
  32. 32.
    D. Aberg, B. Svensson, T. Hallberg, and J. Lindström, Phys. Rev. B 58, 12944 (1998).CrossRefGoogle Scholar
  33. 33.
    V.V. Voronkov and R. Falster, J. Appl. Phys. 107, 53509 (2010).CrossRefGoogle Scholar
  34. 34.
    D. Chung, B. Mitchell, M. Goodarzi, C. Sun, D. Macdonald, and T. Trupke, IEEE J. Photovolt. 4, 88 (2014).CrossRefGoogle Scholar
  35. 35.
    S. Dannefaer, G. Suppes, and V. Avalos, J. Phys. Condens. Matter 21, 015802 (2009).CrossRefGoogle Scholar
  36. 36.
    E. Nicholas, P. Grant, V. Markevich, J. Mullins, R.P. Anthony, D. Macdonald, J.D. Murphy, and F. Rougieux, Phys. Status Solid A 8, 1 (2016).Google Scholar
  37. 37.
    J. Schmidt, K. Bothe, and R. Hezel, in Proceedings of the 29th IEEE Photovoltaic Specialists Conference, vol. 178 (New Orleans, LA _IEEE, New York, 2002).Google Scholar
  38. 38.
    T. Schutz-Kuchly, J. Veirman, S. Dubois, and D.R. Heslinga, Appl. Phys. Lett. 96, 0935050 (2010).CrossRefGoogle Scholar
  39. 39.
    S. De Wolf and M. Kondo, Appl. Phys. Lett. 90, 042111 (2007).CrossRefGoogle Scholar
  40. 40.
    J. Mitchell, D. Macdonald, and A. Cuevas, Appl. Phys. Lett. 94, 162102 (2009).CrossRefGoogle Scholar
  41. 41.
    A. Richter, J. Benick, M. Hermle, and S.W. Glunz, Appl. Phys. Lett. 104, 061606 (2014).CrossRefGoogle Scholar
  42. 42.
    P. Zheng, F.E. Rougieux, N.E. Grant, and D. Macdonald, Photovoltaics 5, 183 (2015).CrossRefGoogle Scholar
  43. 43.
    M. Hirata, M. Hirata, and H. Saito, J. Phys. Soc. Jpn. 27, 405 (1969).CrossRefGoogle Scholar
  44. 44.
    L.C. Kimerling, H.M. DeAngelis, and J.W. Diebold, Solid State Commun. 16, 171 (1975).CrossRefGoogle Scholar
  45. 45.
    E. Letty, J. Veirmana, W. Favrea, and M. Lemitic, Sol. Energy Mater. Sol. Cells 166, 147 (2017).CrossRefGoogle Scholar
  46. 46.
    V. Kozlovski and V. Abrosimova, Radiation Defect Engineering (World Scientific Publishing Company, Selected topics in electronics and systems, Singapore, 2005), p. 37.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Mohamed Hannachi
    • 1
  • Chohdi Amri
    • 1
  • Hachem Hedfi
    • 2
  • Ahmed Zarroug
    • 1
    • 3
    Email author
  • Hatem Ezzaouia
    • 1
  1. 1.Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA)Center for Research and Technology Energy, Tourist Route SolimanHammam-LifTunisia
  2. 2.National Engineering SchoolUniversity of MonastirMonastirTunisia
  3. 3.Ecole Supérieure Privée d’Ingénieurs et des Etudes TechnologiquesUniversité arabe des SciencesTunisTunisia

Personalised recommendations