Journal of Electronic Materials

, Volume 48, Issue 1, pp 368–373 | Cite as

Anomalous Magnetic Properties of Tb/Cr/Ta Film Above Curie Temperature

  • Zhiwei JiaoEmail author
  • Yi Yang
  • Huanjian Chen
  • Jianfeng Wang
  • Yun Zhou
  • Weidi Jiang


Magnetic properties of Tb/Cr/Ta film, for which the Curie temperature (TC) of ferromagnetic Tb is much lower than the Néel temperature (TN) of antiferromagnetic Cr, have been investigated. An apparent TC beyond that of pure Tb film was observed. The origin of this enhancement of TC is due to a magnetic proximity effect between Tb and Cr. In the temperature range of TC < T < TN, the coercivity HC and exchange bias field HE of the film show unusual temperature dependence. As the temperature increases from TC to TN, HE still exists and its sign changes from negative to positive with a low cooling field. At T > TN, HE turns to vanish. The coercivity HC exists not only at TC < T < TN, but also above TN. These unusual results can be discussed in terms of the pinned uncompensated spins and rotatable uncompensated spins in the interface. Additionally, the magnitude of the cooling field has a strong effect on HE, which probably results from the competition between the exchange coupling energy at the Tb/Cr interface and the Zeeman energy of the Cr surface magnetization.


Magnetic materials thin films magnetic properties sputtering exchange coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the National Natural Science Foundation of China (Grant Nos. 51771175, 11504356, 11547048).


  1. 1.
    W.H. Meiklejohn and C.P. Bean, Phys. Rev. 102, 1413 (1956).CrossRefGoogle Scholar
  2. 2.
    J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, and M.D. Baro, Phys. Rep. 422, 65 (2005).CrossRefGoogle Scholar
  3. 3.
    H. Ohldag, A. Scholl, F. Nolting, E. Arenholz, S. Maat, A.T. Young, M. Carey, and J. Stohr, Phys. Rev. Lett. 91, 017203 (2003).CrossRefGoogle Scholar
  4. 4.
    V. Laukhin, V. Skumryev, and X. Marti, Phys. Rev. Lett. 97, 227201 (2006).CrossRefGoogle Scholar
  5. 5.
    A.T. Chen, Y.G. Zhao, P.S. Li, X. Zhang, R.C. Peng, H.L. Huang, L.K. Zou, X.L. Zheng, S. Zhang, and P.X. Miao, Adv. Mater. 28, 363 (2016).CrossRefGoogle Scholar
  6. 6.
    J. Nogués and I.K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).CrossRefGoogle Scholar
  7. 7.
    S.M. Zhou, K. Liu, and C.L. Chien, Phys. Rev. B 58, 14717 (1998).CrossRefGoogle Scholar
  8. 8.
    S.M. Zhou, L. Sun, P.C. Searson, and C.L. Chien, Phys. Rev. B 69, 024408 (2004).CrossRefGoogle Scholar
  9. 9.
    J. Nogués, D. Lederman, T.J. Moran, and I.K. Schuller, Phys. Rev. Let. 76, 4624 (1996).CrossRefGoogle Scholar
  10. 10.
    C. Leighton, J. Nogués, H. Suhl, and I.K. Schuller, Phys. Rev. B 60, 12837 (1999).CrossRefGoogle Scholar
  11. 11.
    J. Nogués, C. Leighton, and I.K. Schuller, Phys. Rev. B 61, 1315 (2000).CrossRefGoogle Scholar
  12. 12.
    T. Ambrose and C.L. Chien, J. Appl. Phys. 83, 7222 (1998).CrossRefGoogle Scholar
  13. 13.
    Z.Y. Liu and S. Adenwalla, J. Appl. Phys. 94, 1105 (2003).CrossRefGoogle Scholar
  14. 14.
    J.G. Hu, G.J. Jin, A. Hu, and Y.Q. Ma, Eur. Phys. J. B 40, 265 (2004).CrossRefGoogle Scholar
  15. 15.
    U. Nowak, K.D. Usadel, J. Keller, P. Miltényi, B. Beschoten, and G. Güntherodt, Phys. Rev. B 66, 014430 (2002).CrossRefGoogle Scholar
  16. 16.
    M. Grimsditch, A. Hoffmann, P. Vavassori, H.T. Shi, and D. Lederman, Phys. Rev. Lett. 90, 257201 (2003).CrossRefGoogle Scholar
  17. 17.
    T. Gredig, I.N. Krivorotov, P. Eames, and E.D. Dahlberg, Appl. Phys. Lett. 81, 1270 (2002).CrossRefGoogle Scholar
  18. 18.
    W. Zhang, T.L. Wen, and K.M. Krishnan, Appl. Phys. Lett. 101, 132401 (2012).CrossRefGoogle Scholar
  19. 19.
    X.W. Wu and C.L. Chien, Phys. Rev. Lett. 81, 2795 (1998).CrossRefGoogle Scholar
  20. 20.
    J.W. Cai, K. Liu, and C.L. Chien, Phys. Rev. B 60, 72 (1999).CrossRefGoogle Scholar
  21. 21.
    Z.W. Jiao, P.Z. Si, W.D. Jiang, Q. Wu, and G.X. Ye, J. Alloys Compd. 458, 1 (2008).CrossRefGoogle Scholar
  22. 22.
    Z.W. Jiao, W.D. Jiang, P.Z. Si, and G.X. Ye, J. Alloys Compd. 463, 96 (2008).CrossRefGoogle Scholar
  23. 23.
    D.E. Hegland, S. Legvold, and F.H. Spedding, Phys. Rev. 131, 158 (1963).CrossRefGoogle Scholar
  24. 24.
    P. Bödeker, A. Schreyer, and H. Zabel, Phys. Rev. B 59, 9408 (1999).CrossRefGoogle Scholar
  25. 25.
    H. Zabel, J. Phys. Condens. Matter 11, 9303 (1999).CrossRefGoogle Scholar
  26. 26.
    Z.W. Jiao, W.D. Jiang, M.G. Chen, and S.J. Yu, Adv. Mater. Res. 179, 836 (2011).CrossRefGoogle Scholar
  27. 27.
    T. Schmitte, A. Schreyer, V. Leiner, R. Siebrecht, K. Theis-Bröhl, and H. Zabel, Europhys. Lett. 48, 692 (1999).CrossRefGoogle Scholar
  28. 28.
    J.A. De Toro, Phys. Rev. Lett. 115, 057201 (2015).CrossRefGoogle Scholar
  29. 29.
    H. Ohldag, Phys. Rev. Lett. 91, 017203 (2003).CrossRefGoogle Scholar
  30. 30.
    S. Brück, Phys. Rev. Lett. 101, 126402 (2008).CrossRefGoogle Scholar
  31. 31.
    Z.W. Jiao, H.J. Chen, W.D. Jiang, J.F. Wang, Y. Zhou, S.J. Yu, Y.L. Hou, and Q.L. Ye, Mater. Lett. 158, 241 (2015).CrossRefGoogle Scholar
  32. 32.
    P. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky, and H. Sowers, Phys. Rev. Lett. 57, 2442 (1986).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsChina Jiliang UniversityHangzhouPeople’s Republic of China

Personalised recommendations