Advertisement

Solution Combustion Synthesis of BiFeO3 Powders Using CTAB as Fuel

  • N. Asefi
  • M. Hasheminiasari
  • S. M. Masoudpanah
Article
  • 10 Downloads

Abstract

Nearly pure BiFeO3 powders were synthesized by the solution combustion method using cetyltrimethylammonium bromide as fuel at various fuel to oxidant ratios (φ). Phase evolution, morphology, magnetic and optical properties were characterized by thermal analysis, infrared spectroscopy, x-ray diffractometry, electron microscopy, photoluminescence and diffuse reflectance spectroscopy techniques, respectively. An impurity Bi24Fe2O39 phase appeared while increasing the fuel content. Magnetization of the as-combusted BiFeO3 powders increased from 0.5 emu/g to 11.1 emu/g on account of the decrease in particle size and appearance of the impurity phase with the increase of φ values. Visible light absorption and band gap energy depended on the purity and morphology, being tunable by fuel content. About 85% of methylene blue was photodegraded in the presence of the powders prepared by φ = 0.5 under visible light irradiation.

Keywords

BiFeO3 solution combustion synthesis CTAB photocatalytic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

There is no conflict of interest.

Supplementary material

11664_2018_6722_MOESM1_ESM.pdf (187 kb)
Supplementary material 1 (PDF 186 kb)

References

  1. 1.
    U.A. Joshi, J.S. Jang, P.H. Borse, and J.S. Lee, Appl. Phys. Lett. 92, 242106 (2008).CrossRefGoogle Scholar
  2. 2.
    S. Farhadi and M. Zaidi, J. Mol. Catal. A Chem. 299, 18 (2009).CrossRefGoogle Scholar
  3. 3.
    T. Soltani and M.H. Entezari, Chem. Eng. J. 251, 207 (2014).CrossRefGoogle Scholar
  4. 4.
    X. Bai, J. Wei, B. Tian, Y. Liu, T. Reiss, N. Guiblin, P. Gemeiner, B. Dkhil, and I.C. Infante, J. Phys. Chem. C 120, 3595 (2016).CrossRefGoogle Scholar
  5. 5.
    A. Jaiswal, R. Das, P. Vivekanand, P. Mary Abraham, S. Adyanthaya, and P. Poddar, J. Phys. Chem. C 114, 2108 (2010).CrossRefGoogle Scholar
  6. 6.
    Y. Han, Y. Ma, C. Quan, N. Gao, Q. Zhang, W. Mao, J. Zhang, J. Yang, X. Li, and W. Huang, Ceram. Int. 41, 2476 (2015).CrossRefGoogle Scholar
  7. 7.
    T. Fan, C. Chen, and Z. Tang, RSC Adv. 6, 9994 (2016).CrossRefGoogle Scholar
  8. 8.
    S.M. Masoudpanah, S.M. Mirkazemi, S. Shabani, and P. Taheri Dolat Abadi, Ceram. Int. 41, 9642 (2015).CrossRefGoogle Scholar
  9. 9.
    A. Varma, A.S. Mukasyan, A.S. Rogachev, and K.V. Manukyan, Chem. Rev. 116, 14493 (2016).CrossRefGoogle Scholar
  10. 10.
    H.H. Nersisyan, J.H. Lee, J.-R. Ding, K.-S. Kim, K.V. Manukyan, and A.S. Mukasyan, Prog. Energy Combust. Sci. 63, 79 (2017).CrossRefGoogle Scholar
  11. 11.
    W. Wen and W. Jin-Ming, RSC Adv. 4, 58090 (2014).CrossRefGoogle Scholar
  12. 12.
    F.T. Li, J. Ran, M. Jaroniec, and S.Z. Qiao, Nanoscale 7, 17590 (2015).CrossRefGoogle Scholar
  13. 13.
    B. Pourgolmohammad, S.M. Masoudpanah, and M.R. Aboutalebi, Ceram. Int. 43, 8262 (2017).CrossRefGoogle Scholar
  14. 14.
    K.C. Patil, M.S. Hegde, T. Rattan, and S.T. Aruna, Chemistry of Nanocrystalline Oxide Materials (Combustion Synthesis, Properties, and Applications) (Singapore: World Scientific Publishing Co., 2008).CrossRefGoogle Scholar
  15. 15.
    H. Parnianfar, S.M. Masoudpanah, S. Alamolhoda, and H. Fathi, J. Magn. Magn. Mater. 432, 24 (2017).CrossRefGoogle Scholar
  16. 16.
    H. Fathi, S.M. Masoudpanah, S. Alamolhoda, and H. Parnianfar, Ceram. Int. 43, 7448 (2017).CrossRefGoogle Scholar
  17. 17.
    J. Yang, X. Li, Yu Junyi Zhou, Y.Z. Tang, and Y. Li, J. Alloys Compd. 509, 9271 (2011).CrossRefGoogle Scholar
  18. 18.
    W. Yin, W. Wang, L. Zhou, S. Sun, and L. Zhang, J. Hazard. Mater. 173, 194 (2010).CrossRefGoogle Scholar
  19. 19.
    R.K. Bedi and I. Singh, ACS Appl. Mater. Interfaces 2, 1361 (2010).CrossRefGoogle Scholar
  20. 20.
    M. Th Makhlouf, B.M. Abu-Zied, and T.H. Mansoure, Adv. Powder Technol. 25, 560 (2014).CrossRefGoogle Scholar
  21. 21.
    C. Dong, X. Xiao, G. Chen, H. Guan, and Y. Wang, Appl. Surf. Sci. 349, 844 (2015).CrossRefGoogle Scholar
  22. 22.
    M. Vadivel, R. Ramesh Babu, K. Ramamurthi, and M. Arivanandhan, Ceram. Int. 42, 19320 (2016).CrossRefGoogle Scholar
  23. 23.
    H. Vahdat Vasei, S.M. Masoudpanah, M. Adeli, and M.R. Aboutalebi, Ceram. Int. 44, 7741 (2018).CrossRefGoogle Scholar
  24. 24.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies, 1st ed. (New York NY: Wiley, 2001).Google Scholar
  25. 25.
    S. Famenin Nezhad Hamedani, S.M. Masoudpanah, and M.S. Bafghi, J. Sol-Gel Sci. Asgharinezhad Baloochi Technol. 86, 743 (2017).CrossRefGoogle Scholar
  26. 26.
    P. Naderi, S.M. Masoudpanah, and S. Alamolhoda, Appl. Phys. A 123, 702 (2017).CrossRefGoogle Scholar
  27. 27.
    S. Shabani, S.M. Mirkazemi, S.M. Masoudpanah, and P. Taheri Dolat Abadi, J. Supercond. Novel Magn. 27, 2795 (2014).CrossRefGoogle Scholar
  28. 28.
    K. Nakamoto and K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (New York: Wiley, 1977).Google Scholar
  29. 29.
    S.M. Masoudpanah, S.M. Mirkazemi, R. Bagheriyeh, F. Jabbari, and F. Bayat, Bull. Mater. Sci. 40, 93 (2017).CrossRefGoogle Scholar
  30. 30.
    K.V. Manukyan, Y.-S. Chen, S. Rouvimov, P. Li, X. Li, S. Dong, X. Liu, J.K. Furdyna, A. Orlov, G.H. Bernstein, W. Porod, S. Roslyakov, and A.S. Mukasyan, J. Phys. Chem. C 118, 16264 (2014).CrossRefGoogle Scholar
  31. 31.
    K.V. Manukyan, A. Cross, S. Roslyakov, S. Rouvimov, A.S. Rogachev, E.E. Wolf, and A.S. Mukasyan, J. Phys. Chem. C 117, 24417 (2013).CrossRefGoogle Scholar
  32. 32.
    A. Kumar, E.E. Wolf, and A.S. Mukasyan, AIChE J. 57, 2207 (2011).CrossRefGoogle Scholar
  33. 33.
    T.T. Carvalho and P.B. Tavares, Mater. Lett. 62, 3984 (2008).CrossRefGoogle Scholar
  34. 34.
    F. Chen, Q.F. Zhang, J.H. Li, Y.J. Qi, C.J. Lu, X.B. Chen, X.M. Ren, and Y. Zhao, Appl. Phys. Lett. 89, 092910 (2006).CrossRefGoogle Scholar
  35. 35.
    Z.M. Tian, S.L. Yuan, X.L. Wang, X.F. Zheng, S.Y. Yin, C.H. Wang, and L. Liu, J. Appl. Phys. 106, 103912 (2009).CrossRefGoogle Scholar
  36. 36.
    V.M. Gaikwad and S.A. Acharya, J. Alloys Compd. 695, 3689 (2017).CrossRefGoogle Scholar
  37. 37.
    T.-J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, and S.S. Wong, Nano Lett. 7, 766 (2007).CrossRefGoogle Scholar
  38. 38.
    S.-M. Lam, J.C. Sin, and A.R. Mohamed, Mater. Res. Bull. 90, 15 (2017).CrossRefGoogle Scholar
  39. 39.
    H. Wang, X. Haomin, C. Zeng, Y. Shen, Y.-H. Lin, and C.-W. Nan, J. Am. Ceram. Soc. 99, 1133 (2016).CrossRefGoogle Scholar
  40. 40.
    S.P. Pattnaik, A. Behera, S. Martha, R. Acharya, and K. Parida, J. Nanopart. Res. 20, 10 (2018).CrossRefGoogle Scholar
  41. 41.
    M. Reda, S. Guy, R. Olivier, C. Dorothée, and V. Michel, Appl. Phys. Express 5, 035802 (2012).CrossRefGoogle Scholar
  42. 42.
    G. Nagaraju, G.C. Shivaraju, G. Banuprakash, and D. Rangappa, Mater. Today Proc. 4, 11700 (2017).CrossRefGoogle Scholar
  43. 43.
    N. Yusoff, L.-N. Ho, S.-A. Ong, Y.-S. Wong, and W. Khalik, Desalination Water Treat. 57, 12496 (2016).CrossRefGoogle Scholar
  44. 44.
    J. He, R. Guo, L. Fang, W. Dong, F. Zheng, and M. Shen, Mater. Res. Bull. 48, 3017 (2013).CrossRefGoogle Scholar
  45. 45.
    N. Asefi, S.M. Masoudpanah, and M. Hasheminiasari, J. Sol-Gel Sci. Technol. 86, 751 (2018).CrossRefGoogle Scholar
  46. 46.
    R. Köferstein, J. Alloys Compd. 590, 324 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • N. Asefi
    • 1
  • M. Hasheminiasari
    • 1
  • S. M. Masoudpanah
    • 1
  1. 1.School of Metallurgy and Materials EngineeringIran University of Science and Technology (IUST)TehranIran

Personalised recommendations