Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 438–444 | Cite as

Electrical and Optoelectronic Properties of Chemically Prepared PbS/MnS Heterojunction

  • Abhijit BanerjeeEmail author
Article
  • 22 Downloads

Abstract

Lead sulfide (PbS)/manganese sulfide (MnS) heterojunction is synthesized by a simple two-step chemical bath deposition technique. The as-synthesized heterojunction is studied based on the optical and electrical analyses. The optical absorbance spectrum of the test structure confirms dual peaks at two different wavelengths, which has prompted consideration of the two band gaps of the structure. The origin of dual peaks in the absorbance plot is attributed to the existence of the PbS base layer and the MnS window layer. The band gaps are estimated using the conventional Tauc’s method (Eg = 1.75 eV and 2.9 eV) and also by the absorbance spectrum fitting method (Eg = 1.82 eV and 2.97 eV). In the dc analyses, the PbS/MnS heterojunction possesses low dark current and high dynamic resistance. However, under illumination (400–700 nm) a distinct photo-response is observed, showing a substantial rise in device current with the reduction of dynamic resistance. The photo-response of the heterojunction is examined at 635–699 nm, 514–538 nm and 410–452 nm wavelengths by analyzing the photo-current and photo-resistance. The device is found to be more photosensitive at lower wavelength illuminations compared to the higher wavelength exposures.

Keywords

Lead sulfide manganese sulfide heterojunction band gap electrical properties photo-response optoelectronic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by the infrastructure provided at the Department of Electronic Science, Acharya Prafulla Chandra College under DST-FIST scheme, Govt. of India. (Sanction order: SR/FST/College-008 dated 15/02/2012). The author is thankful to Dr. B.K. Paul, CGCRI (India), for FESEM micrographs.

References

  1. 1.
    M. Sasani Ghamsari, M.K. Araghi and S.J. Farahani, Mater. Sci. Eng. B, 133, 113 (2006).Google Scholar
  2. 2.
    S. Gunes, K.P. Fritz, H. Neugebauer, N.S. Sariciftci, S. Kumar, and G.D. Scholes, Sol. Energy Mater. Sol. Cell. 91, 420 (2007).CrossRefGoogle Scholar
  3. 3.
    H. Hirata and K. Higashiyama, Bull. Chem. Soc. Jap. 44, 2420 (1971).CrossRefGoogle Scholar
  4. 4.
    I.N. Miroshnikova, A.L. Komissarov, and B.N. Miroshnikov, Meas. Tech. 53, 621 (2010).CrossRefGoogle Scholar
  5. 5.
    J.F. Butler and A.R. Calawa, J. Electrochem. Soc. 112, 1056 (1965).CrossRefGoogle Scholar
  6. 6.
    P.K. Nair, V.M. Garcia, A.B. Hernandez, and M.T.S. Nair, J. Phys. D Appl. Phys. 24, 1466 (1991).CrossRefGoogle Scholar
  7. 7.
    I. Pop, C. Nascu, V. Ionescu, E. Indrea, and I. Bratu, Thin Sol. Film. 307, 240 (1997).CrossRefGoogle Scholar
  8. 8.
    S. Seghaier, N. Kamoun, R. Brini, and A.B. Amara, Mater. Chem. Phys. 97, 71 (2006).CrossRefGoogle Scholar
  9. 9.
    C.D. Lokhande, A. Ennaoui, P.S. Patil, M. Giersig, M. Muller, K. Diesner, and H. Tributsch, Thin Sol. Film. 330, 70 (1998).CrossRefGoogle Scholar
  10. 10.
    D.B. Fan, X.D. Yang, H. Wang, Y.C. Zhang, and H. Yan, Phys. B 337, 165 (2003).CrossRefGoogle Scholar
  11. 11.
    B. Piriout, J. Dexpert-Ghyst, and S. Mochizuki, J. Phys.: Condens. Matter 6, 7317 (1994).Google Scholar
  12. 12.
    C. Gumus, C. Ulutas, R. Esen, O. M. Ozkendir and Y. Ufuktepe, Thin Sol. Film. 492, 1 (2005).Google Scholar
  13. 13.
    C. Gumus, C. Ulutas, and Y. Ufuktepe, Opt. Mater. 29, 1183 (2007).CrossRefGoogle Scholar
  14. 14.
    R. Saran and R.J. Curry, Nat. Photonics 10, 81 (2016).CrossRefGoogle Scholar
  15. 15.
    K.K. Nanda, F.E. Kruis, H. Fissan, and M. Acet, J. Appl. Phys. 91, 2315 (2002).CrossRefGoogle Scholar
  16. 16.
    D. Vankhade, A. Kothari, and T.K. Chaudhuri, J. Electron. Mater. 45, 2789 (2016).CrossRefGoogle Scholar
  17. 17.
    J. Yang and A.V. Walker, Langmuir 30, 6954 (2014).CrossRefGoogle Scholar
  18. 18.
    S. Jana, R. Thapa, R. Maity, and K.K. Chattopadhyay, Physica E 40, 3121 (2008).CrossRefGoogle Scholar
  19. 19.
    S. Watanabe and Y. Mita, J. Electrochem. Soc. 116, 989 (1969).CrossRefGoogle Scholar
  20. 20.
    H. Choi, J.H. Song, J. Jang, X.D. Mai, S. Kim, and S. Jeong, Nanoscale. 7, 17473 (2015).CrossRefGoogle Scholar
  21. 21.
    T. Kawawaki, H. Wang, T. Kubo, K. Saito, J. Nakazaki, H. Segawa, and T. Tatsuma, ACS Nano 9, 4165 (2015).CrossRefGoogle Scholar
  22. 22.
    J. Yuvaloshini, R. Shanmugavadivu, and G. Ravi, Optik. 25, 1775 (2014).CrossRefGoogle Scholar
  23. 23.
    S. Mahmoud and O. Hamid, Fizika A (Zagreb) 10, 21 (2001).Google Scholar
  24. 24.
    S. Seghaier, N. Kamoun, R. Brini, and A.B. Amara, Mater. Chem. Phys. 97, 71 (2006).CrossRefGoogle Scholar
  25. 25.
    S.N. Agbo and F.I. Ezema, Pac. J. Sci. Tech. 8, 1 (2007).Google Scholar
  26. 26.
    J. Tauc, A. Menth, and J. Non-Cryst, Solids. 8–10, 569 (1972).Google Scholar
  27. 27.
    S.M.Sze and Kwak K. Ng, Physics of Semiconductor Devices, third ed., John Wiley & Sons, 2007.Google Scholar
  28. 28.
    N.Ghobadi, Int. Nano Lett. 3, 2:1 (2013).Google Scholar
  29. 29.
    P. Nagpal and V. I. Klimov, Nat. Commun. 2, 486:1 (2011).Google Scholar
  30. 30.
    D.V. Talapin and C.B. Murray, Science 310, 86 (2005).CrossRefGoogle Scholar
  31. 31.
    Y. Liu, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H.W. Hillhouse, and M. Law, Nano Lett. 10, 1960 (2010).CrossRefGoogle Scholar
  32. 32.
    A.F. Mayadas and M. Shatzkes, Phys. Rev. B. 1, 1382 (1970).CrossRefGoogle Scholar
  33. 33.
    N.C.C. Lu, L. Gerzberg, C.Y. Lu, J.D. Meindl, and I.E.E.E. Trans, Elect. Dev. 28, 818 (1981).CrossRefGoogle Scholar
  34. 34.
    N.C.C. Lu, L. Gerzberg, C.Y. Lu, J.D. Meindl, and I.E.E.E. Trans, Elect. Dev. 30, 137 (1983).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Electronic ScienceAcharya Prafulla Chandra CollegeNew Barrackpore, KolkataIndia

Personalised recommendations