Structural Design of Near-Infrared Light-Active Cu/TiO2/NaYF4:Yb,Er Nanocomposite Photocatalysts

  • Duong Van Hau
  • Dang Thi Thanh Nhan
  • Nguyen Van Duc
  • Vu Phi Tuyen
  • Thanh-Dinh Nguyen
  • Tran Thai Hoa
  • Nguyen Duc Cuong


Photocatalysis under low energy light is of great importance for study of environmental pollution impact. There is an increasing demand for preparing integrated photocatalysts to show their potential in persistent organic compound degradation under visible and near-infrared light. In this work, we have reported the structural combination of three functional components of NaYF4:Yb,Er, TiO2, Cu into photocatalytic nanocomposites for near-infrared light (NIR) photocatalysis. Uniform and monodisperse NaYF4:Yb,Er nanocubes prepared by hydrothermolysis were used as a photon converter and they were combined with TiO2 semiconductor and Cu co-catalysts by sequential deposition to fabricate NIR-active photocatalysts. The Cu/TiO2/NaYF4:Yb,Er nanocomposites were investigated for the organic degradation under NIR light. The Cu/TiO2/NaYF4:Yb,Er photocatalysts were photoactive with NIR light and full decomposition of methylene blue was reached for 90 min. These nanocomposites exhibit the NIR photocatalytic response caused by the NIR light absorption and photon electron transfer over NaYF4:Yb,Er, TiO2, and Cu components.


Upconversion nanocrystals upconversion photoluminescence semiconductors nanocomposite photocatalysts near-infrared light-active photocatalysts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 104.06-2017.311. HVD thanks to financial support from the Hue University Foundation Programme (DHH 2016-02-83).


  1. 1.
    E.L. Cates, S.L. Chinnapongse, J.H. Kim, and J.H. Kim, Environ. Sci. Technol. 46, 12316 (2012).CrossRefGoogle Scholar
  2. 2.
    E. Talaie, P. Bonnick, X. Sun, Q. Pang, X. Liang, and L.F. Nazar, Chem. Mater. 29, 90 (2017).CrossRefGoogle Scholar
  3. 3.
    X. Hu, G. Li, and J.C. Yu, Langmuir 26, 3031 (2010).CrossRefGoogle Scholar
  4. 4.
    A. Kubacka, M.F. Garcia, and G. Colon, Chem. Rev. 112, 1555 (2012).CrossRefGoogle Scholar
  5. 5.
    J.L. White, M.F. Baruch, J.E. Pander, Y. Hu, I.C. Fortmeyer, J.E. Park, T. Zang, K. Liao, J. Gu, Y. Yan, T.W. Shaw, E. Abelev, and A.B. Bocarsly, Chem. Rev. 115, 12888 (2015).CrossRefGoogle Scholar
  6. 6.
    Z. Wang, Y. Liu, B. Huang, Y. Dai, Z. Lou, G. Wang, X. Zhang, and X. Qin, Phys. Chem. Chem. Phys. 16, 2758 (2014).CrossRefGoogle Scholar
  7. 7.
    P.V. Kamat, J. Phys. Chem. C 111, 2834 (2007).CrossRefGoogle Scholar
  8. 8.
    R. Rajagopal and K.-S. Ryu, Appl. Catal. B: Environ. 236, 125 (2018).CrossRefGoogle Scholar
  9. 9.
    A. Aghamali, M. Khosravi, H. Hamishehkar, N. Modirshahla, and M.A. Behnajady, Mat. Sci. Semicon. Proc. 87, 142 (2018).CrossRefGoogle Scholar
  10. 10.
    K. Ramasamy, M.A. Malik, N. Revaprasadu, and P. O’Brien, Chem. Mater. 25, 3551 (2013).CrossRefGoogle Scholar
  11. 11.
    D. Raveli, D. Dondi, M. Fagnoni, and A. Albini, Chem. Soc. Rev. 38, 1999 (2009).CrossRefGoogle Scholar
  12. 12.
    A.S. Aleksandrovsky, I.A. Gudim, A.S. Krylov, A.V. Malakhovskii, and V.L. Temerov, J. Alloy. Compd. 496, L18 (2010).CrossRefGoogle Scholar
  13. 13.
    F. Schuth, Chem. Mater. 26, 423 (2014).CrossRefGoogle Scholar
  14. 14.
    J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, Chem. Rev. 115, 395 (2015).CrossRefGoogle Scholar
  15. 15.
    C.S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, and V. Atuchin, Phys. Chem. Chem. Phys. 17, 19278 (2015).CrossRefGoogle Scholar
  16. 16.
    C.S. Lim, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, and V.V. Atuchin, J. Alloy. Compd. 713, 156 (2017).CrossRefGoogle Scholar
  17. 17.
    B. Zhou, B. Shi, D. Jin, and X. Liu, Nat. Nano. 10, 924 (2015).CrossRefGoogle Scholar
  18. 18.
    J. Wang, R. Deng, M.A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T.S.A. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, Nat. Mater. 13, 157 (2014).CrossRefGoogle Scholar
  19. 19.
    K. Shin, T. Jung, E. Lee, G. Lee, Y. Goh, J. Heo, M. Jung, E.J. Jo, H. Lee, M.G. Kim, and K.T. Lee, Phys. Chem. Chem. Phys. 19, 9739 (2017).CrossRefGoogle Scholar
  20. 20.
    H. Terraschke and C. Wickleder, Chem. Rev. 115, 11352 (2015).CrossRefGoogle Scholar
  21. 21.
    K. Peynshaert, B.B. Manshian, F. Joris, K. Braeckmans, S.C.D. Smedt, J. Demeester, and S.J. Soenen, Chem. Rev. 114, 7581 (2014).CrossRefGoogle Scholar
  22. 22.
    W. Feng, X. Zhu, and F. Li, NPG Asia Mater. 5, e75 (2013).CrossRefGoogle Scholar
  23. 23.
    G. Chen, H. Qiu, P.N. Prasad, and X. Chen, Chem. Rev. 114, 5161 (2014).CrossRefGoogle Scholar
  24. 24.
    W.Y. Teoh, J.A. Scott, and R. Amal, J. Phys. Chem. Lett. 3, 629 (2012).CrossRefGoogle Scholar
  25. 25.
    T.D. Nguyen, C.T. Dinh, and T.O. Do, Chem. Commun. 51, 624 (2015).CrossRefGoogle Scholar
  26. 26.
    A.K. Guria and N. Pradhan, Chem. Mater. 28, 5224 (2016).CrossRefGoogle Scholar
  27. 27.
    Y. Tang, W. Di, X. Zhai, R. Yang, and W. Qin, ACS Catal. 3, 405 (2013).CrossRefGoogle Scholar
  28. 28.
    X. Guo, C. Chen, D. Zhang, C.P. Tripp, S. Yin, and W. Qin, RSC Adv. 6, 8127 (2016).CrossRefGoogle Scholar
  29. 29.
    N. Prakash, D. Thangaraju, R. Karthikeyan, M. Arivanandhan, Y. Shimura, and Y. Hayakawa, RSC Adv. 6, 80655 (2016).CrossRefGoogle Scholar
  30. 30.
    K. Binnemans, Chem. Rev. 109, 4283 (2009).CrossRefGoogle Scholar
  31. 31.
    K. Wenderich and G. Mul, Chem. Rev. 116, 14587 (2016).CrossRefGoogle Scholar
  32. 32.
    Z. Deutsch, L. Neeman, and D. Oron, Nat. Nanotechnol. 8, 649 (2013).CrossRefGoogle Scholar
  33. 33.
    H. Li, Y. Wang, H. Li, Y. Zhang, and J. Yang, Sci. Rep. 6, 35941 (2016).CrossRefGoogle Scholar
  34. 34.
    C. Yan, A. Dadvand, F. Rosei, and D.F. Perepichka, J. Am. Chem. Soc. 132, 8868 (2010).CrossRefGoogle Scholar
  35. 35.
    A. Fujishima and K. Honda, Nature 238, 37 (1972).CrossRefGoogle Scholar
  36. 36.
    H. Zhang and J.F. Banfield, Chem. Rev. 114, 9613 (2014).CrossRefGoogle Scholar
  37. 37.
    G. Liu, L. Wang, H.G. Yang, H.M. Cheng, and G.Q. Lu, J. Mater. Chem. 20, 831 (2010).CrossRefGoogle Scholar
  38. 38.
    M. Gao, L. Zhu, W.L. Ong, J. Wang, and G.W. Ho, Catal. Sci. Technol. 5, 4703 (2015).CrossRefGoogle Scholar
  39. 39.
    C. Luo, X. Ren, Z. Dai, Y. Zhang, X. Qi, and C. Pan, ACS Appl. Mater. Interfaces 9, 23265 (2017).CrossRefGoogle Scholar
  40. 40.
    Z. Zhang and J.T. Yates, Chem. Rev. 112, 5520 (2012).CrossRefGoogle Scholar
  41. 41.
    Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li, Chem. Rev. 114, 9987 (2014).CrossRefGoogle Scholar
  42. 42.
    N. Hildebrandt, C.M. Spillmann, W.R. Algar, T. Pons, M.H. Stewart, K. Susumu, S.A. Diaz, J.B. Delehanty, and I.L. Medintz, Chem. Rev. 117, 536 (2017).CrossRefGoogle Scholar
  43. 43.
    G. Liu, J.C. Yu, G.Q. Lu, and H.M. Cheng, Chem. Commun. 47, 6763 (2011).CrossRefGoogle Scholar
  44. 44.
    F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, Nature 463, 1061 (2010).CrossRefGoogle Scholar
  45. 45.
    R.B. Anderson, S.J. Smith, P.S. May, and M.T. Berry, J. Phys. Chem. Lett. 5, 36 (2014).CrossRefGoogle Scholar
  46. 46.
    D.K. Ma, S.M. Huang, Y.Y. Yu, Y.F. Xu, and Y.Q. Dong, J. Phys. Chem. C 113, 8136 (2009).CrossRefGoogle Scholar
  47. 47.
    X. Wang, J. Zhuang, Q. Peng, and Y. Li, Nature 437, 121 (2005).CrossRefGoogle Scholar
  48. 48.
    M.T. Berry and P.S. May, J. Phys. Chem. A 119, 9805 (2015).CrossRefGoogle Scholar
  49. 49.
    R. Asahi, T. Morikawa, H. Irie, and T. Ohwaki, Chem. Rev. 114, 9824 (2014).CrossRefGoogle Scholar
  50. 50.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann, Chem. Rev. 114, 9919 (2014).CrossRefGoogle Scholar
  51. 51.
    S. Rasalingam, H.S. Kibombo, C.-M. Wu, R. Peng, J. Baltrusaitis, and R.T. Koodali, Appl. Catal. B: Environ. 148–149, 394 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Duong Van Hau
    • 1
    • 2
  • Dang Thi Thanh Nhan
    • 3
  • Nguyen Van Duc
    • 2
  • Vu Phi Tuyen
    • 4
  • Thanh-Dinh Nguyen
    • 5
  • Tran Thai Hoa
    • 1
  • Nguyen Duc Cuong
    • 1
    • 6
  1. 1.University of SciencesHue UniversityHueVietnam
  2. 2.University of Agriculture and ForestryHue UniversityHueVietnam
  3. 3.University of EducationHue UniversityHueVietnam
  4. 4.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  5. 5.Department of ChemistryUniversity of British ColumbiaVancouverCanada
  6. 6.School of Hospitality and TourismHue UniversityHueVietnam

Personalised recommendations