Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 329–336 | Cite as

Structural Design of Near-Infrared Light-Active Cu/TiO2/NaYF4:Yb,Er Nanocomposite Photocatalysts

  • Duong Van Hau
  • Dang Thi Thanh Nhan
  • Nguyen Van Duc
  • Vu Phi Tuyen
  • Thanh-Dinh Nguyen
  • Tran Thai Hoa
  • Nguyen Duc CuongEmail author
Article
  • 43 Downloads

Abstract

Photocatalysis under low energy light is of great importance for study of environmental pollution impact. There is an increasing demand for preparing integrated photocatalysts to show their potential in persistent organic compound degradation under visible and near-infrared light. In this work, we have reported the structural combination of three functional components of NaYF4:Yb,Er, TiO2, Cu into photocatalytic nanocomposites for near-infrared light (NIR) photocatalysis. Uniform and monodisperse NaYF4:Yb,Er nanocubes prepared by hydrothermolysis were used as a photon converter and they were combined with TiO2 semiconductor and Cu co-catalysts by sequential deposition to fabricate NIR-active photocatalysts. The Cu/TiO2/NaYF4:Yb,Er nanocomposites were investigated for the organic degradation under NIR light. The Cu/TiO2/NaYF4:Yb,Er photocatalysts were photoactive with NIR light and full decomposition of methylene blue was reached for 90 min. These nanocomposites exhibit the NIR photocatalytic response caused by the NIR light absorption and photon electron transfer over NaYF4:Yb,Er, TiO2, and Cu components.

Keywords

Upconversion nanocrystals upconversion photoluminescence semiconductors nanocomposite photocatalysts near-infrared light-active photocatalysts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 104.06-2017.311. HVD thanks to financial support from the Hue University Foundation Programme (DHH 2016-02-83).

References

  1. 1.
    E.L. Cates, S.L. Chinnapongse, J.H. Kim, and J.H. Kim, Environ. Sci. Technol. 46, 12316 (2012).Google Scholar
  2. 2.
    E. Talaie, P. Bonnick, X. Sun, Q. Pang, X. Liang, and L.F. Nazar, Chem. Mater. 29, 90 (2017).Google Scholar
  3. 3.
    X. Hu, G. Li, and J.C. Yu, Langmuir 26, 3031 (2010).Google Scholar
  4. 4.
    A. Kubacka, M.F. Garcia, and G. Colon, Chem. Rev. 112, 1555 (2012).Google Scholar
  5. 5.
    J.L. White, M.F. Baruch, J.E. Pander, Y. Hu, I.C. Fortmeyer, J.E. Park, T. Zang, K. Liao, J. Gu, Y. Yan, T.W. Shaw, E. Abelev, and A.B. Bocarsly, Chem. Rev. 115, 12888 (2015).Google Scholar
  6. 6.
    Z. Wang, Y. Liu, B. Huang, Y. Dai, Z. Lou, G. Wang, X. Zhang, and X. Qin, Phys. Chem. Chem. Phys. 16, 2758 (2014).Google Scholar
  7. 7.
    P.V. Kamat, J. Phys. Chem. C 111, 2834 (2007).Google Scholar
  8. 8.
    R. Rajagopal and K.-S. Ryu, Appl. Catal. B: Environ. 236, 125 (2018).Google Scholar
  9. 9.
    A. Aghamali, M. Khosravi, H. Hamishehkar, N. Modirshahla, and M.A. Behnajady, Mat. Sci. Semicon. Proc. 87, 142 (2018).Google Scholar
  10. 10.
    K. Ramasamy, M.A. Malik, N. Revaprasadu, and P. O’Brien, Chem. Mater. 25, 3551 (2013).Google Scholar
  11. 11.
    D. Raveli, D. Dondi, M. Fagnoni, and A. Albini, Chem. Soc. Rev. 38, 1999 (2009).Google Scholar
  12. 12.
    A.S. Aleksandrovsky, I.A. Gudim, A.S. Krylov, A.V. Malakhovskii, and V.L. Temerov, J. Alloy. Compd. 496, L18 (2010).Google Scholar
  13. 13.
    F. Schuth, Chem. Mater. 26, 423 (2014).Google Scholar
  14. 14.
    J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, Chem. Rev. 115, 395 (2015).Google Scholar
  15. 15.
    C.S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, and V. Atuchin, Phys. Chem. Chem. Phys. 17, 19278 (2015).Google Scholar
  16. 16.
    C.S. Lim, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, and V.V. Atuchin, J. Alloy. Compd. 713, 156 (2017).Google Scholar
  17. 17.
    B. Zhou, B. Shi, D. Jin, and X. Liu, Nat. Nano. 10, 924 (2015).Google Scholar
  18. 18.
    J. Wang, R. Deng, M.A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T.S.A. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, Nat. Mater. 13, 157 (2014).Google Scholar
  19. 19.
    K. Shin, T. Jung, E. Lee, G. Lee, Y. Goh, J. Heo, M. Jung, E.J. Jo, H. Lee, M.G. Kim, and K.T. Lee, Phys. Chem. Chem. Phys. 19, 9739 (2017).Google Scholar
  20. 20.
    H. Terraschke and C. Wickleder, Chem. Rev. 115, 11352 (2015).Google Scholar
  21. 21.
    K. Peynshaert, B.B. Manshian, F. Joris, K. Braeckmans, S.C.D. Smedt, J. Demeester, and S.J. Soenen, Chem. Rev. 114, 7581 (2014).Google Scholar
  22. 22.
    W. Feng, X. Zhu, and F. Li, NPG Asia Mater. 5, e75 (2013).Google Scholar
  23. 23.
    G. Chen, H. Qiu, P.N. Prasad, and X. Chen, Chem. Rev. 114, 5161 (2014).Google Scholar
  24. 24.
    W.Y. Teoh, J.A. Scott, and R. Amal, J. Phys. Chem. Lett. 3, 629 (2012).Google Scholar
  25. 25.
    T.D. Nguyen, C.T. Dinh, and T.O. Do, Chem. Commun. 51, 624 (2015).Google Scholar
  26. 26.
    A.K. Guria and N. Pradhan, Chem. Mater. 28, 5224 (2016).Google Scholar
  27. 27.
    Y. Tang, W. Di, X. Zhai, R. Yang, and W. Qin, ACS Catal. 3, 405 (2013).Google Scholar
  28. 28.
    X. Guo, C. Chen, D. Zhang, C.P. Tripp, S. Yin, and W. Qin, RSC Adv. 6, 8127 (2016).Google Scholar
  29. 29.
    N. Prakash, D. Thangaraju, R. Karthikeyan, M. Arivanandhan, Y. Shimura, and Y. Hayakawa, RSC Adv. 6, 80655 (2016).Google Scholar
  30. 30.
    K. Binnemans, Chem. Rev. 109, 4283 (2009).Google Scholar
  31. 31.
    K. Wenderich and G. Mul, Chem. Rev. 116, 14587 (2016).Google Scholar
  32. 32.
    Z. Deutsch, L. Neeman, and D. Oron, Nat. Nanotechnol. 8, 649 (2013).Google Scholar
  33. 33.
    H. Li, Y. Wang, H. Li, Y. Zhang, and J. Yang, Sci. Rep. 6, 35941 (2016).Google Scholar
  34. 34.
    C. Yan, A. Dadvand, F. Rosei, and D.F. Perepichka, J. Am. Chem. Soc. 132, 8868 (2010).Google Scholar
  35. 35.
    A. Fujishima and K. Honda, Nature 238, 37 (1972).Google Scholar
  36. 36.
    H. Zhang and J.F. Banfield, Chem. Rev. 114, 9613 (2014).Google Scholar
  37. 37.
    G. Liu, L. Wang, H.G. Yang, H.M. Cheng, and G.Q. Lu, J. Mater. Chem. 20, 831 (2010).Google Scholar
  38. 38.
    M. Gao, L. Zhu, W.L. Ong, J. Wang, and G.W. Ho, Catal. Sci. Technol. 5, 4703 (2015).Google Scholar
  39. 39.
    C. Luo, X. Ren, Z. Dai, Y. Zhang, X. Qi, and C. Pan, ACS Appl. Mater. Interfaces 9, 23265 (2017).Google Scholar
  40. 40.
    Z. Zhang and J.T. Yates, Chem. Rev. 112, 5520 (2012).Google Scholar
  41. 41.
    Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li, Chem. Rev. 114, 9987 (2014).Google Scholar
  42. 42.
    N. Hildebrandt, C.M. Spillmann, W.R. Algar, T. Pons, M.H. Stewart, K. Susumu, S.A. Diaz, J.B. Delehanty, and I.L. Medintz, Chem. Rev. 117, 536 (2017).Google Scholar
  43. 43.
    G. Liu, J.C. Yu, G.Q. Lu, and H.M. Cheng, Chem. Commun. 47, 6763 (2011).Google Scholar
  44. 44.
    F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, Nature 463, 1061 (2010).Google Scholar
  45. 45.
    R.B. Anderson, S.J. Smith, P.S. May, and M.T. Berry, J. Phys. Chem. Lett. 5, 36 (2014).Google Scholar
  46. 46.
    D.K. Ma, S.M. Huang, Y.Y. Yu, Y.F. Xu, and Y.Q. Dong, J. Phys. Chem. C 113, 8136 (2009).Google Scholar
  47. 47.
    X. Wang, J. Zhuang, Q. Peng, and Y. Li, Nature 437, 121 (2005).Google Scholar
  48. 48.
    M.T. Berry and P.S. May, J. Phys. Chem. A 119, 9805 (2015).Google Scholar
  49. 49.
    R. Asahi, T. Morikawa, H. Irie, and T. Ohwaki, Chem. Rev. 114, 9824 (2014).Google Scholar
  50. 50.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann, Chem. Rev. 114, 9919 (2014).Google Scholar
  51. 51.
    S. Rasalingam, H.S. Kibombo, C.-M. Wu, R. Peng, J. Baltrusaitis, and R.T. Koodali, Appl. Catal. B: Environ. 148–149, 394 (2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Duong Van Hau
    • 1
    • 2
  • Dang Thi Thanh Nhan
    • 3
  • Nguyen Van Duc
    • 2
  • Vu Phi Tuyen
    • 4
  • Thanh-Dinh Nguyen
    • 5
  • Tran Thai Hoa
    • 1
  • Nguyen Duc Cuong
    • 1
    • 6
    Email author
  1. 1.University of SciencesHue UniversityHueVietnam
  2. 2.University of Agriculture and ForestryHue UniversityHueVietnam
  3. 3.University of EducationHue UniversityHueVietnam
  4. 4.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  5. 5.Department of ChemistryUniversity of British ColumbiaVancouverCanada
  6. 6.School of Hospitality and TourismHue UniversityHueVietnam

Personalised recommendations