Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 460–466 | Cite as

Efficiency Improvements in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes with Graded Superlattice Last Quantum Barrier and Without Electron Blocking Layer

  • Xiu Zhang
  • Huiqing Sun
  • Jing Huang
  • Tianyi Liu
  • Xin Wang
  • Yaohua Zhang
  • Shupeng Li
  • Sheng Zhang
  • Yufei Hou
  • Zhiyou Guo
Article
  • 43 Downloads

Abstract

The characteristics of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) with electroluminescence peak wavelength of emission about 289 nm have been investigated by optimizing the last quantum barrier (LQB) in the active region. The results demonstrate that the internal quantum efficiency and radiative recombination rate of DUV-LEDs with a graded superlattice last quantum barrier (GSL LQB) and without an electron blocking layer (EBL) are higher than for other structures under current of 180 mA. Also, the electron and hole leakage currents are reduced for the GSL LQB structure. This structure contributes to effective electron confinement and hole injection owing to increased overlap of electron and hole wavefunctions resulting from low electrostatic fields in the active region. As a result, the optical output power of the structure with a GSL LQB and without an EBL is increased by 1.62 times, and the spontaneous emission intensity by 1.56 times, compared with the conventional structure.

Keywords

AlGaN/AlGaN graded superlattice last quantum barrier DUV light-emitting diodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This project was supported by the Innovation Project of Graduate School of South China Normal University, the Science and Technology Program Project for the Innovation of Forefront and Key Technology of Guangdong Province, China (Grant Nos. 2014B010119004, 2014B010121001), the Institute of Science and Technology Collaborative Innovation Major Project of Guangzhou, China (Grant No. 201604010047), and the Special Fund for Scientific and Technological Innovation and Development of Guangzhou—Foreign Science and Technology Cooperation Project, China (Grant No. 201807010083).

References

  1. 1.
    H.Y. Ryu, Nanoscale Res. Lett. 9, 1 (2014).CrossRefGoogle Scholar
  2. 2.
    D. Tobjörk, H. Aarnio, P. Pulkkinen, R. Bollström, A. Määttänen, and P. Ihalainen, Thin Solid Films 520, 2949 (2012).CrossRefGoogle Scholar
  3. 3.
    M.A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, Water Res. 45, 1481 (2011).CrossRefGoogle Scholar
  4. 4.
    M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, Semicond. Sci. Technol. 26, 014036 (2011).CrossRefGoogle Scholar
  5. 5.
    S. Zhou, H. Hu, X. Liu, M. Liu, X. Ding, C. Gui, S. Liu, and L. Jay Guo, Jpn. J. Appl. Phys. 56, 111001 (2017).CrossRefGoogle Scholar
  6. 6.
    T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, Appl. Phys. Express 10, 031002 (2017).CrossRefGoogle Scholar
  7. 7.
    Y. Guo, Y. Zhang, J. Yan, H. Xie, L. Liu, and X. Chen, Appl. Phys. Lett. 111, 011102 (2017).CrossRefGoogle Scholar
  8. 8.
    H. Hu, S. Zhou, X. Liu, Y. Gao, C. Gui, and S. Liu, Sci. Rep. 7, 44627 (2017).CrossRefGoogle Scholar
  9. 9.
    Y. Liao, C. Thomidis, C. Kao, and T.D. Moustakas, Appl. Phys. Lett. 98, 081110 (2011).CrossRefGoogle Scholar
  10. 10.
    L. He, W. Zhao, K. Zhang, C. He, H. Wu, N. Liu, W. Song, Z. Chen, and S. Li, Opt. Lett. 43, 515 (2018).CrossRefGoogle Scholar
  11. 11.
    Y. Li, S. Chen, W. Tian, Z. Wu, Y. Fang, J. Dai, and C. Chen, IEEE Photonics J. 5, 8200309 (2013).CrossRefGoogle Scholar
  12. 12.
    L. Lu, Z. Wan, F.J. Xu, B. Shen, C. Lv, M. Jiang, and Q.G. Chen, Phys. Status Solidi 214, 1700461 (2017).CrossRefGoogle Scholar
  13. 13.
    F. Li, L. Wang, G. Zhao, Y. Meng, H. Li, S. Yang, and Z. Wang, Superlattices Microstruct. 110, 324 (2017).CrossRefGoogle Scholar
  14. 14.
    J. Huang, Z. Guo, M. Guo, Y. Liu, S. Yao, J. Sun, and H. Sun, J. Electron. Mater. 46, 4527 (2017).CrossRefGoogle Scholar
  15. 15.
    T. Nishida, T. Makimoto, H. Saito, and T. Ban, Appl. Phys. Lett. 84, 1002 (2004).CrossRefGoogle Scholar
  16. 16.
    W. Tian, Z.H. Feng, B. Liu, H. Xiong, J.B. Zhang, J.N. Dai, S.J. Cai, and C.Q. Chen, Opt. Quant. Electron. 45, 381 (2013).CrossRefGoogle Scholar
  17. 17.
    V. Fiorentini, F. Bernardini, F.D. Sala, A.D. Carlo, and P. Lugli, Phys. Rev. B 60, 8849 (1999).CrossRefGoogle Scholar
  18. 18.
    J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, Science 327, 60 (2010).CrossRefGoogle Scholar
  19. 19.
    I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).CrossRefGoogle Scholar
  20. 20.
    K.B. Nam, J. Li, M.L. Nakarmi, J.Y. Lin, and H.X. Jiang, Appl. Phys. Lett. 84, 5264 (2004).CrossRefGoogle Scholar
  21. 21.
    C. Sheng Xia, Z.M. Simon Li, Z.Q. Li, and Y. Sheng, Appl. Phys. Lett. 102, 141101 (2013).CrossRefGoogle Scholar
  22. 22.
    V. Fiorentini, F. Bernardini, and O. Ambacher, Appl. Phys. Lett. 80, 1204 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Xiu Zhang
    • 1
  • Huiqing Sun
    • 1
    • 2
  • Jing Huang
    • 1
  • Tianyi Liu
    • 1
  • Xin Wang
    • 1
  • Yaohua Zhang
    • 1
  • Shupeng Li
    • 1
  • Sheng Zhang
    • 1
  • Yufei Hou
    • 1
  • Zhiyou Guo
    • 1
    • 2
  1. 1.Institute of Opto-Electronic Materials and TechnologySouth China Normal UniversityGuangzhouChina
  2. 2.Guangdong Provincial Engineering Technology Research Center for Low Carbon and Advanced Energy MaterialsGuangzhouChina

Personalised recommendations