Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 286–295 | Cite as

Dependence of the Photoluminescence of Hydrophilic CuInS2 Colloidal Quantum Dots on Cu-to-In Molar Ratios

  • Chi Zhang
  • Yong Xia
  • Linyuan Lian
  • Xiaoming Fu
  • Liping Yin
  • Jianbing Zhang
  • Wei Luo
  • Xiangshui Miao
  • Daoli Zhang
Article
  • 30 Downloads

Abstract

Copper indium sulfide (CIS) quantum dots (QDs) are attractive as potential optoelectronic devices, since they have large absorption coefficients across a broad spectral range, size- and composition-tunable photoluminescence from the visible to the near-infrared, and low toxicity. However, CIS QDs should be hydrophilic in certain applications. In this present work, hydrophilic CIS and CIS/ZnS colloidal QDs were synthesized by a one-pot environmentally-friendly route employing N,N-dimethylformamide (DMF) as the solvent and in situ generated H2S as the sulphur precursor. The effect of stoichiometry was investigated by varying the feeding molar ratios of Cu/In, which did not affect the crystalline structure of the CIS colloidal QDs, while the optical property was influenced significantly. With the decrease of the feeding molar ratios of Cu/In, the band gap of the resulting CIS colloidal QDs had blue-shifts and relative photoluminescence quantum yield of the corresponding CIS/ZnS colloidal QDs increased monotonically.

Keywords

Hydrophilic CuInS2 and CuInS2/ZnS quantum dots Cu-to-In ratios optical stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Financial support from National Natural Science Foundation of China (No. 51302096), China Scholarship Council (Grant Nos. 201806160042 and 201806160191), the Fundamental Research Funds for the Central Universities (Grant Nos. 2017KFYXJJ039 and 2015TS051), the Hubei Provincial Natural Science Foundation of China (Grant No. ZRMS2017000370), the Fundamental Research Funds of Wuhan City (No. 2016060101010075), and the Innovation Foundation of the Shenzhen Government (JCYJ20160429182959405) are acknowledged. The authors thank the Analytical and Testing Center of Huazhong University of Science and Technology and Maryland NanoCenter for making available the shared experimental facilities.

Supplementary material

11664_2018_6713_MOESM1_ESM.pdf (810 kb)
Supplementary material 1 (PDF 809 kb)

References

  1. 1.
    H. Kim, J.Y. Han, D.S. Kang, S.W. Kim, D.S. Jang, M. Suh, A. Kirakosyan, and D.Y. Jeon, J. Cryst. Growth 326, 90 (2011).CrossRefGoogle Scholar
  2. 2.
    H. Zhong, Z. Bai, and B. Zou, J. Phys. Chem. Lett. 3, 3167 (2012).CrossRefGoogle Scholar
  3. 3.
    S. Coe, W.K. Woo, M. Bawendi, and V. Bulović, Nature 420, 800 (2002).CrossRefGoogle Scholar
  4. 4.
    T. Pons, E. Pic, N. Lequeux, E. Cassette, L. Bezdetnaya, F. Guillemin, F. Marchal, and B. Dubertret, ACS Nano 4, 2531 (2010).CrossRefGoogle Scholar
  5. 5.
    L. Li, T.J. Daou, I. Texier, K.T.T. Chi, N.Q. Liem, and P. Reiss, Chem. Mater. 21, 2422 (2009).CrossRefGoogle Scholar
  6. 6.
    D.W. Deng, Y.Q. Chen, J. Cao, J.M. Tian, Z.Y. Qian, S. Achilefu, and Y.Q. Gu, Chem. Mater. 24, 3029 (2012).CrossRefGoogle Scholar
  7. 7.
    Y.L. Zhou, W.H. Zhou, M. Li, Y.F. Du, and S.X. Wu, J. Phys. Chem. C 115, 19632 (2011).CrossRefGoogle Scholar
  8. 8.
    V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J.A. Hollingsworth, C.A. Leatherdale, H.J. Eisler, and M.G. Bawendi, Science 290, 314 (2000).CrossRefGoogle Scholar
  9. 9.
    Z.H. Zhang, W.S. Chin, and J.J. Vittal, J. Phys. Chem. B 108, 18569 (2004).CrossRefGoogle Scholar
  10. 10.
    Y. Chen and Z. Rosenzweig, Anal. Chem. 74, 5132 (2002).CrossRefGoogle Scholar
  11. 11.
    J.B. Zhang, J.B. Gao, E.M. Miller, J.M. Luther, and M.C. Beard, ACS Nano 8, 614 (2014).CrossRefGoogle Scholar
  12. 12.
    J.B. Zhang, B.D. Chernomordik, R.W. Crisp, D.M. Kroupa, J.M. Luther, E.M. Miller, J.B. Gao, and M.C. Beard, ACS Nano 9, 7151 (2015).CrossRefGoogle Scholar
  13. 13.
    J.B. Zhang and D.L. Zhang, Chem. Mater. 22, 1579 (2010).CrossRefGoogle Scholar
  14. 14.
    L. De Trizio, M. Prato, A. Genovese, A. Genovese, A. Casu, M. Povia, R. Simonutti, M.J.P. Alcocer, C. D’Andrea, F. Tassone, and L. Manna, Chem. Mater. 24, 2400 (2012).CrossRefGoogle Scholar
  15. 15.
    Y. Hamanaka, T. Kuzuya, T. Sofue, T. Kino, K. Ito, and K. Sumiyama, Chem. Phys. Lett. 466, 176 (2008).CrossRefGoogle Scholar
  16. 16.
    R. Xie, M. Rutherford, and X.G. Peng, J. Am. Chem. Soc. 131, 5691 (2009).CrossRefGoogle Scholar
  17. 17.
    H. Zhong, Z. Bai, and B. Zou, J. Phys. Chem. Lett. 3, 3167 (2012).CrossRefGoogle Scholar
  18. 18.
    E.S. Speranskaya, C. Sevrin, S. De Saeger, Z. Hens, I.Y. Goryacheva, and C. Grandfils, ACS Appl. Mater. Interfaces 8, 7613 (2016).CrossRefGoogle Scholar
  19. 19.
    H. Kim, H.S. Jang, B.H. Kwon, M. Suha, Y.S. Kim, H.C. Sang, and Y.J. Duk, Electrochem. Solid State Lett. 15, K16 (2011).CrossRefGoogle Scholar
  20. 20.
    J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, and T. Nann, Adv. Mater. 20, 4068 (2008).CrossRefGoogle Scholar
  21. 21.
    D.W. Deng, Y.Q. Chen, J. Cao, J.M. Tian, Z.Y. Qian, S. Achilefu, and Y.Q. Gu, Chem. Mater. 24, 3029 (2012).CrossRefGoogle Scholar
  22. 22.
    K. Yu, P. Ng, J. Ouyang, M.B. Zaman, A. Abulrob, T.N. Baral, D. Fatehi, Z.J. Jakubek, D. Kingston, X. Wu, X. Liu, C. Hebert, D.M. Leek, and D.M. Whitfield, Appl. ACS Appl. Mater. Interfaces 5, 2870 (2013).CrossRefGoogle Scholar
  23. 23.
    L. Li, T.J. Daou, I. Texier, T.T.K. Chi, N.Q. Liem, and P. Reiss, Chem. Mater. 21, 2422 (2009).CrossRefGoogle Scholar
  24. 24.
    E.S. Speranskaya, N.V. Beloglazova, S. Abé, T. Aubert, P.F. Smet, D. Poelman, I.Y. Goryacheva, S. De Saeger, and Z. Hens, Langmuir 30, 7567 (2014).CrossRefGoogle Scholar
  25. 25.
    E.E. Lees, T.L. Nguyen, A.H.A. Clayton, and P. Mulvaney, ACS Nano 3, 1121 (2009).CrossRefGoogle Scholar
  26. 26.
    W.W. Yu, E. Chang, J.C. Falkner, J.Y. Zhang, A.M. Al-Somali, C.M. Sayes, J. Johns, R. Drezek, and V.L. Colvin, J. Am. Chem. Soc. 129, 2871 (2007).CrossRefGoogle Scholar
  27. 27.
    J. Lee and C.S. Han, Nanoscale Res. Lett. 10, 145 (2015).CrossRefGoogle Scholar
  28. 28.
    J.B. Zhang, W.P. Sun, L.P. Yin, X.S. Miao, and D.L. Zhang, J. Mater. Chem. C 2, 4812 (2014).CrossRefGoogle Scholar
  29. 29.
    M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, and H. Maeda, J. Chem. Phys. 129, 134709 (2008).CrossRefGoogle Scholar
  30. 30.
    D.E. Nam, W.S. Song, and H. Yang, Science 361, 491 (2011).Google Scholar
  31. 31.
    W.S. Song and H. Yang, Chem. Mater. 24, 1961 (2012).CrossRefGoogle Scholar
  32. 32.
    M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmuüller, and U. Resch-Genger, Anal. Chem. 81, 6285 (2009).CrossRefGoogle Scholar
  33. 33.
    Y.K. Kim, S.H. Ahn, K. Chung, Y.S. Choa, and C.J. Choia, J. Mater. Chem. 22, 1516 (2012).CrossRefGoogle Scholar
  34. 34.
    S.B. Zhang, S.H. Wei, A. Zunger, and H. Katayama-Yoshida, Phys. Rev. B 57, 9642 (1998).CrossRefGoogle Scholar
  35. 35.
    M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, and H. Maeda, J. Chem. Phys. 129, 134709 (2008).CrossRefGoogle Scholar
  36. 36.
    A.D.P. Leach and J.E. Macdonald, J. Phys. Chem. Lett. 7, 572 (2016).CrossRefGoogle Scholar
  37. 37.
    J. Zhang, R. Xie, and W. Yang, Chem. Mater. 23, 3357 (2011).CrossRefGoogle Scholar
  38. 38.
    J.C. Park and Y.S. Nam, J. Colloid Interface Sci. 460, 173 (2015).CrossRefGoogle Scholar
  39. 39.
    K. Yoshino, T. Ikari, S. Shirakata, H. Miyake, and K. Hiramatsu, Appl. Phys. Lett. 78, 742 (2001).CrossRefGoogle Scholar
  40. 40.
    K. Wakita, F. Fujita, and N. Yamamoto, J. Appl. Phys. 90, 1292 (2001).CrossRefGoogle Scholar
  41. 41.
    K. Wakita, H. Hirooka, S. Yasuda, F. Fujita, and N. Yamamoto, J. Appl. Phys. 83, 443 (1998).CrossRefGoogle Scholar
  42. 42.
    J.J.M. Binsma, L.J. Giling, and J. Bloem, J. Lumin. 27, 55 (1982).CrossRefGoogle Scholar
  43. 43.
    S.L. Castro, S.G. Bailey, R.P. Raffaelle, K.K. Banger, and A.F. Hepp, J. Phys. Chem. B 108, 12429 (2004).CrossRefGoogle Scholar
  44. 44.
    H.Y. Ueng and H.L. Hwang, J. Phys. Chem. Solids 50, 1297 (1989).CrossRefGoogle Scholar
  45. 45.
    C.Q. Cai, L.L. Zhai, Q.Q. Wu, Y.H. Ma, L.J. Zhang, Y. Yang, C. Zou, and S.M. Huang, J. Alloy Compd. 719, 227 (2017).CrossRefGoogle Scholar
  46. 46.
    H.Z. Zhong, S.S. Lo, T. Mirkovic, Y.C. Li, Y.Q. Ding, Y.F. Li, and G.D. Scholes, ACS Nano 4, 5253 (2010).CrossRefGoogle Scholar
  47. 47.
    L. Li, A. Pandey, D.J. Werder, B.P. Khanal, J.M. Pietryga, and V.I. Klimov, J. Am. Chem. Soc. 133, 1176 (2011).CrossRefGoogle Scholar
  48. 48.
    J. Park and S.W. Kim, J. Mater. Chem. 21, 3745 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyUSA
  3. 3.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.Engineering Research Centre for Functional Ceramics, the Ministry of EducationHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  5. 5.School of Physics, Communication and ElectronicsJiangxi Normal UniversityNanchang CityPeople’s Republic of China
  6. 6.Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkUSA

Personalised recommendations