Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1456–1460 | Cite as

Measurements of the Spin-Selective Magnetic Hysteresis Curve in Fe–3 wt.% Si Alloy Using Magnetic Compton Scattering

  • Chan Wook KimEmail author
  • Hee Soo Kang
  • Kyu Seok Han
  • Naruki Tsuji
  • Yoshiharu Sakurai
5th International Conference of Asian Union of Magnetics Societies
  • 8 Downloads
Part of the following topical collections:
  1. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)

Abstract

In order to resolve the total magnetization of Fe–3 wt.% Si into spin and orbital contributions, we attempted to measure the spin-selective magnetic hysteresis curve using magnetic Compton scattering. The spin-selective magnetic hysteresis curve as a function of an applied magnetic field was determined by analyzing the integrated intensity of magnetic Compton spectra, which reflect only the momentum density of spin-polarized electrons in Fe–3 wt.% Si alloy. The orbital magnetic hysteresis curve was obtained by taking the difference between the vibrating sample magnetometer loop and the spin-selective magnetic hysteresis curve. The results show that the spin moment dominates the total magnetization in Fe–3 wt.% Si alloy and the \( g \) value in the alloy is estimated to be 2.34, which is larger than that in a pure Fe metal, which is 2.09.

Keywords

Spin-selective magnetic hysteresis curve magnetic Compton scattering grain-oriented Si steel ratio of spin to orbital moment energy losses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This MCS experiment was performed with approval from the Japan Synchrotron Radiation Research Institute (Proposal no. 2017A1604). We would like to thank committee members of SPring-8 for providing beam time for the experiment.

References

  1. 1.
    N. P. Goss, US Patent 1965559, 1934.Google Scholar
  2. 2.
    L. Berger, J. Appl. Phys. 5, 1954 (1984).CrossRefGoogle Scholar
  3. 3.
    C.H. Marrows, Adv. Phys. 54, 585 (2005).CrossRefGoogle Scholar
  4. 4.
    G. Bertotti, Hysteresis in magnetism (San Diego: Academic Press, 1998), p. 3.CrossRefGoogle Scholar
  5. 5.
    M. Cooper, P. Mijnarends, N. Shiotani, N. Sakai, and A. Bansil, X-ray Compton Scattering (New York: Oxford University Press, 2004), pp. 289–332.CrossRefGoogle Scholar
  6. 6.
    N. Sakai and K. Ono, Phys. Rev. Lett. 37, 351 (1976).CrossRefGoogle Scholar
  7. 7.
    Y. Tanaka, N. Sakai, Y. Kubo, and H. Kawata, Phys. Rev. Lett. 70, 1537 (1993).CrossRefGoogle Scholar
  8. 8.
    M.A.G. Dixon, J.A. Duffy, S. Gardelis, J.E. McCarthy, M.J. Cooper, S.B. Dugdale, T. Jarlborg, and D.N. Timms, J. Phys. Condens. Matter 10, 2759 (1998).CrossRefGoogle Scholar
  9. 9.
    Y. Sakurai, Y. Tanaka, T. Ohata, Y. Watanabe, S. Nanao, Y. Ushigami, T. Iwazumi, J. Kawata, and N. Shiotani, J. Phys.: Conden. Matter 6, 9469 (1994).Google Scholar
  10. 10.
    M.J. Cooper, E. Zukowski, D.N. Timms, R. Armstrong, F. Itoh, Y. Tanaka, M. Ito, J. Kawata, and R. Bateson, Phys. Rev. Lett. 71, 1095 (1993).CrossRefGoogle Scholar
  11. 11.
    S. Mizusaki, T. Ohnishi, Y. Kozaki, Y. Nagata, M. Itou, Y. Sakurai, Y. Noro, H. Samata, and I.E.E.E. Trans, Mag. 45, 4399 (2009).CrossRefGoogle Scholar
  12. 12.
    C. Shenton-Taylor, J.A. Duffy, J.W. Taylor, C.A. Steer, D.N. Timms, and M.J. Cooper, J. Phys. Condens. Matter. 19, 186208 (2007).CrossRefGoogle Scholar
  13. 13.
    A. Agui, H. Sakurai, T. Tamura, T. Kurachi, M. Tanaka, H. Adachi, and H. Kawata, J. Synchrotron Radiat. 17, 321 (2010).CrossRefGoogle Scholar
  14. 14.
    M. Itou, A. Koizumi, and Y. Sakurai, Appl. Phys. Lett. 102, 082403 (2013).CrossRefGoogle Scholar
  15. 15.
    C.W. Kim, Y. Tanaka, Y. Sakurai, and S. Nanao, Mater. Sci. Forum 449–452, 1073 (2004).CrossRefGoogle Scholar
  16. 16.
    Y. Sakurai, M. Itou, J. Tamura, S. Nanao, A. Thamizhavel, Y. Inada, A. Galatanu, E. Yamamoto, and Y. Onuki, J. Phys. Condens. Matter 15, S2183 (2003).CrossRefGoogle Scholar
  17. 17.
    Y. Kubo and S. Asano, Phys. Rev. B 42, 4431 (1990).CrossRefGoogle Scholar
  18. 18.
    D. Bonnemberg, K.A. Hempel, and H.P.J. Wijn, Magnetic properties of Metals, Landolt-Bornstein New Series Group III, Vol. 19a (Wijn (Berlin): Springer, 1986), p. 178.Google Scholar
  19. 19.
    N. Sakai, J. Appl. Cryst. 29, 81 (1996).CrossRefGoogle Scholar
  20. 20.
    Y. Ogata, H. Chudo, B. Gu, N. Kobayashi, M. Ono, K. Harii, M. Matsuo, E. Saitoh, and S. Maekawa, J. Magn. Magn. Mater. 442, 329 (2017).CrossRefGoogle Scholar
  21. 21.
    Y.B. Xu, M. Tselepi, E. Dudzik, C.M. Guertler, C.A.F. Vaz, G. Wastlbauer, D.J. Freeland, J.A.C. Bland, and G. van der Laan, J. Mag. Mag. Mater. 226–230, 1643 (2001).CrossRefGoogle Scholar
  22. 22.
    C.T. Chen, Y.U. Idzerda, H.J. Lin, N.Y. Smith, G. Meigs, E. Chaban, G.H. Ho, E. Pellegrin, and F. Sette, Phys. Rev. Lett. 75, 152 (1995).CrossRefGoogle Scholar
  23. 23.
    M. Ulmeanu, C. Antoniak, U. Wiedwald, M. Farle, Z. Frait, and S. Sun, Phys. Rev. B 69, 054417 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Metallic Materials Research GroupResearch Institute of Industrial Science and TechnologyPohangKorea
  2. 2.Steel Research Group, Technical Research LaboratoriesPOSCOPohangKorea
  3. 3.Experimental Research Division Japan Synchrotron Radiation Research InstituteMikazukiJapan

Personalised recommendations