Journal of Electronic Materials

, Volume 48, Issue 1, pp 312–320 | Cite as

Quantitative Correlation between Electrical Resistivity and Microhardness of Cu-Ni-Mo Alloys via a Short-Range Order Cluster Model

  • Hongming Li
  • Chuang DongEmail author
  • Yajun Zhao
  • Xiaona Li
  • Dayu ZhouEmail author


Strength and electrical resistivity are coupled in metal alloys as both are based upon a similar microstructure mechanism, but the quantitative relationship between them is not known due to the complex microstructures involved. The present work analyzes the dependence of hardness and electrical resistivity on solute contents for ternary [Moy/(y+12)Ni12/(y+12)]xCu100−x alloys (at.%), where x = 0.3–15.0 is the total solute content and y = 0.5–6.0 the ratio between Mo and Ni. The alloys are designed following the cluster-plus-glue-atom model to reach three distinct structural states, i.e., cluster solution state (y = 1), where Mo is dissolved via a chemical short-range order characterized by Mo-centered and Ni-nearest-neighbored [Mo1-Ni12] cluster, cluster solution state plus extra Ni solution (y < 1), and a cluster solution state plus extra Mo in precipitation (y > 1). The measured electrical resistivity and microhardness data are correlated with these three structural states to reveal the property dependencies on solute contents. The cluster solution enhances the strength, without causing much increase in the electrical resistivity, as the solutes are organized into cluster-type local atomic aggregates that decrease dislocation mobility more strongly than electron scattering. Analogous to residual resistivity ρR, which indicates the change of resistivity with reference to pure Cu, residual microhardness HR and residual lattice constant aR are also defined. For the ideal cluster solution state (y = 1, Mo/Ni = 1/12), the mentioned three parameters are correlated with the total solute content x by ρR = 1.08·x (10−8 Ω m), HR = 1.50·x (Kgf mm−2), and aR = − 1.08·x (10−4 nm). From these, ρR = 0.72HR = − aR. Such simple relationships indicate that resistivity and strength are dependent on the same cluster-type solution mechanism and can be a good reference for evaluating strength and resistivity performance of Cu alloys.


Electrical resistivity hardness cluster-plus-glue-atom model short-range order Cu alloys 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by National Key R&D Program of China (2017YFB0306100), Natural Science Foundation of Inner Mongolia Autonomous Region of China (2018LH5001), Natural Science Foundation of China (11674045), and by the Science Challenging Program (TZ2016004).


  1. 1.
    L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu, Science 304, 422 (2004).CrossRefGoogle Scholar
  2. 2.
    S.Z. Han, S.H. Lim, S. Kim, J. Lee, M. Goto, H.G. Kim, B. Han, and K.H. Kim, Sci. Rep. 6, 30907 (2016).CrossRefGoogle Scholar
  3. 3.
    R.H. Pry and R.W. Hennig, Acta Metall. 2, 318 (1954).CrossRefGoogle Scholar
  4. 4.
    K.J. Cho and S.I. Hong, Met. Mater. Int. 18, 355 (2012).CrossRefGoogle Scholar
  5. 5.
    W.D. Callister, Materials Science and Engineering, An Introduction, 7th ed. (New York: Wiley, 2007), pp. 665–720.Google Scholar
  6. 6.
    T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma, Science 300, 464 (2003).CrossRefGoogle Scholar
  7. 7.
    K. Lu, L. Lu, and S. Suresh, Science 324, 349 (2009).CrossRefGoogle Scholar
  8. 8.
    T. Zhu and J. Li, Prog. Mater. Sci. 55, 710 (2010).CrossRefGoogle Scholar
  9. 9.
    W. Pfeiler, Acta Metall. 36, 2417 (1988).CrossRefGoogle Scholar
  10. 10.
    A.H. Cottrell, Report of a conference on strength of solids. 30 (1948).Google Scholar
  11. 11.
    J.C. Fisher, Acta Metall. 2, 9 (1954).CrossRefGoogle Scholar
  12. 12.
    S. Takeuchi, J. Phys. Soc. Jpn. 27, 929 (1969).CrossRefGoogle Scholar
  13. 13.
    W. Pfeiler and R. Reihsner, Phys. Status Solidi A 97, 377 (1986).CrossRefGoogle Scholar
  14. 14.
    A. Van Den Beukel, Vacancies and Interstitials in Metals (Amsterdam: North-Holland, 1969), pp. 427–479.Google Scholar
  15. 15.
    A. Kapička and J. Polák, J. Phys. B. 22, 476 (1972).Google Scholar
  16. 16.
    T.H. Courtney, Mechanical Behavior of Materials, 2nd ed. (Grove: Waveland Press, 2005), p. 232.Google Scholar
  17. 17.
    J.M. Cowley, Phys. Rev. A 138, 1384 (1965).CrossRefGoogle Scholar
  18. 18.
    H.M. Li, Y.J. Zhao, X.N. Li, D.Y. Zhou, and C. Dong, J. Phys. D Appl. Phys. 49, 035306 (2016).CrossRefGoogle Scholar
  19. 19.
    Y.J. Zhao, Master Dissertation Dalian University of Technology (2012).Google Scholar
  20. 20.
    A. Matthiessen and C. Vogt, Philos. Trans. R. Soc. Lond. 154, 167 (1864).CrossRefGoogle Scholar
  21. 21.
    H.P. Anwar Ali, I. Radchenko, J. Zhou, L. Qing, and A. Budiman, J. Mater.: Des. Appl. (2017).
  22. 22.
    A.S. Budiman, K.R. Narayanan, N. Li, J. Wang, N. Tamura, M. Kunz, and A. Misra, Mater. Sci. Eng. A 635, 6 (2015).CrossRefGoogle Scholar
  23. 23.
    J.B. Gibson, Phys. Chem. Solids 1, 27 (1956).CrossRefGoogle Scholar
  24. 24.
    G.L. Hall, Phys. Rev. 116, 604 (1959).CrossRefGoogle Scholar
  25. 25.
    A.E. Asch and G.L. Hall, Phys. Rev. 132, 1047 (1963).CrossRefGoogle Scholar
  26. 26.
    P.H. Gaskell, Acta Metall. 29, 1203 (1981).CrossRefGoogle Scholar
  27. 27.
    M. Yousuf, P.C. Sahu, H.K. Jajoo, S. Rajagopalan, and K.G. Rajan, J. Phys. F Met. Phys. 16, 373 (1986).CrossRefGoogle Scholar
  28. 28.
    D. Han, Metal Hardness Testing Technical Manual (Changsha: Central South University Press, 2003), pp. 18–23.Google Scholar
  29. 29.
    C. Biselli, D.G. Morris, and N. Randall, Scr. Metall. Mater. 30, 1327 (1994).CrossRefGoogle Scholar
  30. 30.
    J.R. Groza and J.C. Gibeling, Mater. Sci. Eng. A 171, 115 (1993).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Key Laboratory of Materials Modification(Dalian University of Technology), Ministry of EducationDalianPeople’s Republic of China
  2. 2.Inner Mongolia University for NationalitiesTongliaoPeople’s Republic of China

Personalised recommendations