Advertisement

A Brief Review on High-Temperature, Pb-Free Die-Attach Materials

  • Hongwen Zhang
  • Jonathan Minter
  • Ning-Cheng Lee
Article

Abstract

High-Pb solders have been used as die-attach and interconnect materials for decades in discrete power components. Because of the known harmful effects of Pb to human health and the environment, as well as the demand of the wide-band-gap SiC/GaN power devices serving under high power density and high junction temperature, alternative Pb-free solders/materials and solutions have been studied intensively. Pb-free alternatives to replace high-Pb solders are still in their infancy. The exemption of using high-Pb solders has been extended to 2021, although it may be terminated anytime if a new technology or material were to be accepted industry-wide. The potential high-temperature Pb-free materials, including solders (AuSn/AuSi/AuGe, ZnAl and BiAgX®), Ag-sintering material, and transient liquid-phase bonding (TLPB) material, are reviewed in this paper with an emphasis on BiAgX® solders. The extremely high cost of Au-based solders limits their applications, although they have been used in high-temperature electronics. Zn-Al has a high melting temperature, good mechanical properties, and good thermal performance. However, the high reactivity makes Zn-Al solders only available in wire and preform. BiAgX® solder (available in paste, wire and preform) has been developed to replace the high-Pb solders for use in low-power discrete components, with relatively low cost and better reliability than the high-lead counterpart. Ag-sintering material and TLPB material form joints by atomic diffusion (either solid diffusion for sintering or solid–liquid interdiffusion for TLPB). The challenges in mass-production and the cost have restricted their success to be widely used in industry. Although it is likely that none of these materials/technologies are ideal to satisfy all the requirements of the variety of high temperature Pb-free die attach applications in terms of processing/reliability/cost, each solution has the potential to satisfy a niche within this broader categorization.

Keywords

Pb-free solder Ag-sintering transient liquid phase bonding die attach BiAgX® 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank Dr. Liang Ying from GE Research Center and Dr. Harry Schoeller from Universal Instrument Corporation for their work and discussion on BiAgX®. The authors would also like to acknowledge the colleagues of Indium Corporation for their continuous support and help on the HTLF Solder Project.

References

  1. 1.
    J.W.R. Teo, F.L. Ng, L.S.K. Goi, Y.F. Sun, Z.F. Wang, X.Q. Shi, J. Wei, and G.Y. Li, Microelectron. Eng. 85, 512 (2008).CrossRefGoogle Scholar
  2. 2.
    S. Tanimoto, K. Matsui, Y. Murakami, H. Yamaguchi, and H. Okumura, in Proceeding of 2010 International Conference and Exhibition of High Temperature Electronics, TA1, (2010)Google Scholar
  3. 3.
    A. Haque, B.H. Lim, A.S.N.A. Haseeb, and H.H. Masjuki, J. Mater. Sci.: Mater. Electron. 23, 115 (2012).Google Scholar
  4. 4.
    M. Rettenmayr, P. Lambracht, B. Kempf, and C. Tschudin, J. Electron. Mater. 31, 278 (2002).CrossRefGoogle Scholar
  5. 5.
    S. Tanimoto, K. Matsui, Y. Zushi, S. Sato, Y. Murakami, M. Takamori, and T. Iseki, Mater. Sci. Forum 717–720, 853 (2012).CrossRefGoogle Scholar
  6. 6.
    G. Zeng, S. McDonald, and K. Nogita, Microelectron. Reliab. 52, 1306 (2012).CrossRefGoogle Scholar
  7. 7.
    H. Zhang and N.C. Lee, U.S. Patent 9017446 B2Google Scholar
  8. 8.
    H. Zhang and N.C. Lee, U.S. Patent 9636784 B2Google Scholar
  9. 9.
    H. Zhang and N.C. Lee, SMTA J. 26, 28 (2013).Google Scholar
  10. 10.
    K.S. Siow, J. Electron. Mater. 43, 947 (2014).CrossRefGoogle Scholar
  11. 11.
    R. Dudek, in Proceeding of 14th International Conference on Thermal, Mechanical and Multi-physics Simulation and Experiments in Microelectronics and Microsystems, (2013)Google Scholar
  12. 12.
    Z. Shen, R.W. Johnson, and M.C. Hamilton, IEEE Trans. Electron. Dev. 62, 346 (2015).CrossRefGoogle Scholar
  13. 13.
    V.R. Manikam and K.Y. Cheong, IEEE Trans. Comp. Packag. Manuf. Technol. 1, 457 (2011).CrossRefGoogle Scholar
  14. 14.
    L. Yin, in AREA Consortium Meeting, Binghamton, NY, March 2012.Google Scholar
  15. 15.
    J.R. Holaday and C.A. Handwerker, in High Temperature Die-Attach Materials for Microelectronics Packaging, ed. K.S. Siow (Springer, 2018) (in press)Google Scholar
  16. 16.
    H. Scholes, in AREA Consortium Spring Meeting, Binghamton, NY March 2014Google Scholar
  17. 17.
    S. Tanimoto, N. Hirama, K. Watanabe, H. Tanisawa, K. Matsui, and S. Sato, in Annual Spring Meeting of Applied Physics, Japan (2013)Google Scholar
  18. 18.
    Y. Takaku, L. Felicia, L. Ohnuma, R. Kainuma, and K. Ishida, J. Electron. Mater. 37, 314 (2008).CrossRefGoogle Scholar
  19. 19.
    T. Yamaguchi, O. Ikeda, Y. Oda, S. Hata, K. Kuroki, H. Kuroda, and A. Hirose, J. Electron. Mater. 44, 751 (2015).CrossRefGoogle Scholar
  20. 20.
    H. Zhang, R.S. Mao, N.C. Lee, and L. Yin, in TMS Annual Meeting, San Antonio, USA (2013)Google Scholar
  21. 21.
    F. Thummler and R. Oberacker, Introduction to Powder Metallurgy (London: Institute of Materials, 1993).Google Scholar
  22. 22.
    Y. Tan, X. Lin, G. Chen, Y. Mei, and X. Chen, J. Electron. Mater. 44, 761 (2015).CrossRefGoogle Scholar
  23. 23.
    R. Khazaka, L. Mendizabai, and D. Henry, J. Electron. Mater. 43, 2459 (2014).CrossRefGoogle Scholar
  24. 24.
    J.F. Li, P.A. Agyakwa, and C.M. Johnson, Acta Mater. 58, 3429 (2010).CrossRefGoogle Scholar
  25. 25.
    H. Schwarzbauer, U.S. Patent 4810672, 1989Google Scholar
  26. 26.
    H. Schwarzbauer, US Patent 4903885, 1990Google Scholar
  27. 27.
    H. Schwarzbauer, U.S. Patent 5058796, 1991Google Scholar
  28. 28.
    J. Bai, Z.Z. Zhang, J.N. Calata, and G.-Q. Lu, IEEE Trans. Comp. Packag. Technol. 29, 589 (2006).CrossRefGoogle Scholar
  29. 29.
    T.G. Lei, J.N. Calata, G.-Q. Lu, X. Chen, and S.F. Luo, IEEE Trans. Compon. Packag. Technol. V33, 98 (2010).CrossRefGoogle Scholar
  30. 30.
    W.P. Liu and N.C. Lee, U.S. Patent 8348139 B2, 2013Google Scholar
  31. 31.
    N.A. Nikolic, U.S. Patent US2005/0137340A1Google Scholar
  32. 32.
  33. 33.
    H. Baker, H. Okamoto, S.D. Henry, G.A. Davidson, M.A. Fleming, L. Kacprzak, and H.F. Lampman, in Alloy Phase diagram, ASM Handbook, Vol. 3 (1990), p. 2.26, 2.56, and 2.76Google Scholar
  34. 34.
    J.Z. Cui, R.W. Johnson, and M. Hamiton, IEEE Trans. Comp. Packag. Manuf. Technol. 7, 1598 (2017).CrossRefGoogle Scholar
  35. 35.
    H.W. Zhang and N.C. Lee, in Proceeding of IMAPS Annual Meeting, Pasadena, USA (2018)Google Scholar
  36. 36.
    J.K. Mackenzie and R. Shuttleworth, Proc. Phys. Soc. Sect B. 62, 833 (1949).CrossRefGoogle Scholar
  37. 37.
    S.J.L. Kang, Sintering: Densification, Grain Growth and Microstructure (New York: Elsevier, 2005).Google Scholar
  38. 38.
    S.P. Lim, B. Pan, H. Zhang, W. Ng, B. Wu, K.S. Siow, S. Sabne, and M. Tsuriya, in Proceeding of 2017 International Conference on Electronics Packaging, Yamagata, Japan, TA4-4, (2017)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Hongwen Zhang
    • 1
  • Jonathan Minter
    • 1
  • Ning-Cheng Lee
    • 1
  1. 1.Indium Corporation of AmericaClintonUSA

Personalised recommendations