Journal of Electronic Materials

, Volume 48, Issue 1, pp 244–251 | Cite as

Negative Capacitance Effect in Ag/α-In2Se3/CdS/CdSe/C Dual Band Stop Filters

  • Hazem K. Khanfar
  • A. F. QasrawiEmail author
  • Sufyan R. Shehada


In the current study, a 1.5 μm thick three channel microwave band filter is designed and characterized. The thin film device which was constructed from the indium selenide, cadmium sulfide and cadmium selenide stacked dielectric materials sandwiched between silver and carbon films is studied by means of x-ray diffraction, energy dispersive x-ray analysis and impedance spectroscopy techniques. It was observed that the Ag thin film substrate induced the formation of the hexagonal α-In2Se3 phase of indium selenide. The x-ray analysis has also shown that the deposition of hexagonal CdS over Ag/α-In2Se3 and that of hexagonal CdSe over α-In2Se3/CdS under vacuum pressure of 10−8 bar is of a highly strained and mismatched physical nature. The impedance spectroscopy analysis in the frequency domain of 0.10–1.80 GHz has shown that; while the Ag/α-In2Se3/C channel exhibit negative capacitance (NC) effects in the frequency domain of 0.10–1.40 GHz, the Ag/α-In2Se3/CdS/C and the Ag/α-In2Se3/CdS/CdSe/C channels displayed a NC feature in the domains of 1.24–1.40 GHz and 1.10–1.56 GHz, respectively. The fitting of the capacitance spectra in accordance with the modified Ershov model allowed determining the NC and band filtering parameters. It was also observed that, although the Ag/α-In2Se3/C channel behaves as a high frequency low pass filter, the second and third channels displayed band stop filter features with notch frequencies of 1.38 GHz and 1.49 GHz, respectively. The features of the device nominate it for use as a parasitic capacitance canceller and as a three channels microwave filter.


Hexagonal dielectric materials coating negative capacitance band filters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This project was funded by the Deanship of Scientific Research (DSR), at Arab American University, Jenin (2017-2018 Cycle 1). The authors, therefore, acknowledge with thanks the DSR technical and financial support.


  1. 1.
    Y.-L. Lee and Y.-S. Lo, Adv. Func. Mater. 19, 604 (2009).CrossRefGoogle Scholar
  2. 2.
    X. Yang, B. Liu, B. Li, J. Zhang, W. Li, L. Wu, and L. Feng, Appl. Surf. Sci. 367, 480 (2016).CrossRefGoogle Scholar
  3. 3.
    D.-M. Li, L.-Y. Cheng, Y.-D. Zhang, Q.-X. Zhang, X.-M. Huang, Y.-H. Luo, and Q.-B. Meng, Sol. Energy Mater. Sol. Cells 120, 454 (2014).CrossRefGoogle Scholar
  4. 4.
    X. Zhang, Y. Lin, J. Wu, J. Jing, and B. Fang, Opt. Commun. 395, 117 (2017).CrossRefGoogle Scholar
  5. 5.
    L. Yang, C. McCue, Q. Zhang, E. Uchaker, Y. Mai, and G. Cao, Nanoscale 7, 3173 (2015).CrossRefGoogle Scholar
  6. 6.
    S.-Y. Cho, N. Oh, S. Nam, Y. Jiang, and M. Shim, Nanoscale 9, 6103 (2017).CrossRefGoogle Scholar
  7. 7.
    S.E. Al Garni, A. Omar, and A.F. Qasrawi, Plasmonics 12, 515 (2017).CrossRefGoogle Scholar
  8. 8.
    S.I. Drapak, Z.D. Kovalyuk, V.V. Netyaga, and V.B. Orletskii, Tech. Phys. Lett. 28, 707 (2002).CrossRefGoogle Scholar
  9. 9.
    A.F. Qasrawi and S. Rabbaa, Phys. Status Solidi (b) 253, 755 (2016).CrossRefGoogle Scholar
  10. 10.
    M. Islam, Y. Sulaiman, and N. Amin, Chalcogenide Lett. 8, 65 (2011).Google Scholar
  11. 11.
    T.Y. Abed, A.F. Qasrawi, and S.E. Al Garni, J. Alloy. Compd. 731, 1022 (2018).CrossRefGoogle Scholar
  12. 12.
    K. Kambas, J. Fotsing, E. Hatzikraniotis, and C. Julien, Phys. Scr. 37, 397 (1988).CrossRefGoogle Scholar
  13. 13.
    Z. Wang, L.P.H. Jeurgens, and E.J. Mittemeijer, Metal-Induced Crystallization: Fundamentals and Applications (Singapore: Pan Stanford Publishing, 2015), pp. 25–60.CrossRefGoogle Scholar
  14. 14.
    A. Omar, A.F. Qasrawi, and N.M. Gasanly, J. Alloy. Compd. 724, 98 (2017).CrossRefGoogle Scholar
  15. 15.
    J. Jasieniak and P. Mulvaney, J. Am. Chem. Soc. 129, 2841 (2007).CrossRefGoogle Scholar
  16. 16.
    N.M. Khusayfan, A.F. Qasrawi, and H.K. Khanfar, Mater. Res. Express 5, 026303 (2018).CrossRefGoogle Scholar
  17. 17.
    M. Ershov, H.C. Liu, L. Li, M. Buchanan, Z.R. Wasilewski, and A.K. Jonscher, IEEE Trans. Electron Devices 45, 2196 (1998).CrossRefGoogle Scholar
  18. 18.
    H.G. Shiraz, F.R. Astaraei, O. Tavakoli, S.H. Mousavi, and F. Rahimi, Silicon 10, 205 (2018).CrossRefGoogle Scholar
  19. 19.
    Z. Xizhen, Z. Sujuan, Z. Huichao, P. Xiuyu, C. Chuanhui, Y. Tao, L. Xiangping, C. Yi, X. Guichao, Z. Daming, L. Xixian, and C. Baojiu, J. Phys. D Appl. Phys. 51, 055105 (2018).CrossRefGoogle Scholar
  20. 20.
    S. Wang and F.C. Lee, 2007 IEEE Power Electronics Specialists Conference (2007), pp. 2887.Google Scholar
  21. 21.
    M.P. Hardy (U.S. Patent 8,740,640: issued June 3, 2014).Google Scholar
  22. 22.
    S.E.A. Garni and A.F. Qasrawi, IEEE Trans. Electron Devices 64, 244 (2017).CrossRefGoogle Scholar
  23. 23.
    Y.K. Zahedi, H. Ghafghazi, S.H.S. Ariffin, and N.M. Kassim, In International Conference on Informatics Engineering and Information Science (Berlin: Springer, 2011) pp. 614–623.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Hazem K. Khanfar
    • 1
  • A. F. Qasrawi
    • 2
    • 3
    Email author
  • Sufyan R. Shehada
    • 2
  1. 1.Department of Telecommunication EngineeringArab American UniversityJeninPalestine
  2. 2.Department of PhysicsArab American UniversityJeninPalestine
  3. 3.Faculty of EngineeringAtilim UniversityAnkaraTurkey

Personalised recommendations