Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 252–260 | Cite as

Enhanced Efficiency of Dye-Sensitized Solar Cells Based on Polyol-Synthesized Nickel–Zinc Oxide Composites

  • Moab Rajan Philip
  • Rupesh Babu
  • Krishnakumar Vasudevan
  • Hieu Pham Trung NguyenEmail author
Article
  • 20 Downloads

Abstract

In the present work, nickel–zinc oxide (Ni-ZnO) particles have been fabricated through a modified polyol route at 250°C. The highly porous Ni-ZnO samples developed were of high crystalline quality and exhibited great potential for dye-sensitized solar cell (DSSC) applications on account of the quadrupled intensity values of short-circuit current density of around 1.42 mA/cm2, in contrast to 0.31 mA/cm2 for a bare zinc oxide (ZnO) device. The conversion efficiency of the Ni-ZnO DSSC was measured to be 0.416% which is ∼ 6 times higher than that a of ZnO solar cell. Detailed characterization techniques including x-ray diffraction, photoluminescence, scanning electron microscopy and energy-dispersive x-ray spectroscopy were performed on the samples. The Ni-ZnO samples were found to be crystalline with a hexagonal wurtzite lattice structure. The improved efficiency of Ni-ZnO stems from the enhanced absorption and large surface area of the composite.

Keywords

Nickel–zinc oxide nanomaterials porous polyol method  dye-sensitized solar cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is partly supported by NJIT. The authors would also like to thank Dr. T. N. Narayanan of the Surface Science and Interface Engineering Group of TIFR Centre for Interdisciplinary Sciences, Hyderabad, India, and Dr. Deepak Kumar Pattanayak of the Chlor-Alkali Division, CSIR-CECRI, Karaikudi, Tamil Nadu, India, for their support and fruitful discussions during the work. The authors do not have any competing financial support.

References

  1. 1.
    D.G. Thomas, J. Phys. Chem. Solids 15, 86 (1960).CrossRefGoogle Scholar
  2. 2.
    E. Bacaksiz, M. Parlak, M. Tomakin, A. Özçelik, M. Karakız, and M. Altunbaş, J. Alloys Compd. 466, 447 (2008).CrossRefGoogle Scholar
  3. 3.
    J. Wang, J. Cao, B. Fang, P. Lu, S. Deng, and H. Wang, Mater. Lett. 59, 1405 (2005).CrossRefGoogle Scholar
  4. 4.
    R. Wahab, S.G. Ansari, Y.S. Kim, H.K. Seo, and H.S. Shin, Appl. Surf. Sci. 253, 7622 (2007).CrossRefGoogle Scholar
  5. 5.
    S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, H.W. Shim, E.K. Suh, and C.J. Lee, Chem. Phys. Lett. 363, 134 (2002).CrossRefGoogle Scholar
  6. 6.
    M. Bitenc and Z.C. Orel, MRS Bull. 44, 381 (2009).CrossRefGoogle Scholar
  7. 7.
    Q. Xie, Z. Dai, J. Liang, L. Xu, W. Yu, and Y. Qian, Solid State Commun. 136, 304 (2005).CrossRefGoogle Scholar
  8. 8.
    Q. Zhong and E. Matijevic, J. Mater. Chem. 6, 443 (1996).CrossRefGoogle Scholar
  9. 9.
    L. Wang and M. Muhammed, J. Mater. Chem. 9, 2871 (1999).CrossRefGoogle Scholar
  10. 10.
    J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, and Yan, Chem. Mater. 14, 4172 (2002).CrossRefGoogle Scholar
  11. 11.
    O.A. Fouad, A.A. Ismail, Z.I. Zaki, and R.M. Mohamed, Appl. Catal. B 62, 144 (2006).CrossRefGoogle Scholar
  12. 12.
    M.J. Alam and D.C. Cameron, J. Vac. Sci. Technol., A 19, 1642 (2001).CrossRefGoogle Scholar
  13. 13.
    C.R. Gorla, N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, M. Wraback, and H. Shen, J. Appl. Phys. 85, 2595 (1999).CrossRefGoogle Scholar
  14. 14.
    J.A. Anta, E. Guillén, and R. Tena-Zaera, J. Phys. Chem. C 116, 11413 (2012).CrossRefGoogle Scholar
  15. 15.
    M. Rajan Philip, H.P.T. Nguyen, R. Babu, V. Krishnakumar, and T.H.Q. Bui, Curr. Nanomater. 3, 1 (2018).CrossRefGoogle Scholar
  16. 16.
    P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandes, P. Vilarinho, and R. Martins, Vacuum 64, 281 (2002).CrossRefGoogle Scholar
  17. 17.
    S.B. Majumder, M. Jain, P.S. Dobal, and R.S. Katiyar, Mater. Sci. Eng. B 103, 16 (2003).CrossRefGoogle Scholar
  18. 18.
    T.I. Yang, R.N.C. Brown, L.C. Kempel, and P. Kofinas, J. Nanoparticle. Res. 12, 2967 (2012).CrossRefGoogle Scholar
  19. 19.
    D. Devadathan and R. Raveendran, Int. J. Chem. Eng. Appl. 5, 240 (2014).Google Scholar
  20. 20.
    B. Bierska-Piech, J. Panek, and M. Karolus, J. Achiev. Mater. Manuf. Eng. (JAMME) 45, 157 (2011).Google Scholar
  21. 21.
    F.G. Petzold, J. Jasinski, E.L. Clark, J.H. Kim, J. Absher, H. Toufar, and M.K. Sunkara, Catal. Today 198, 219 (2012).CrossRefGoogle Scholar
  22. 22.
    A.F. Lotus, S. Bhargava, E.T. Bender, E.A. Evans, R.D. Ramsier, D.H. Reneker, and G.G. Chase, J. Appl. Phys. 106, 014303 (2009).CrossRefGoogle Scholar
  23. 23.
    M. Kurian and D.S. Nair, J. Saudi Chem. Soc. 20, S517 (2016).CrossRefGoogle Scholar
  24. 24.
    M. Veith, M. Haas, and V. Huch, Chem. Mater. 17, 95 (2005).CrossRefGoogle Scholar
  25. 25.
    L. Poul, S. Ammar, N. Jouini, F. Fievet, and F. Villain, J. Sol-Gel. Sci. Technol. 26, 261 (2003).CrossRefGoogle Scholar
  26. 26.
    M.A. Mohd Sarjidan, S.H. Basri, and W.H. Abd Majid, Adv. Mater. Res. 895, 250 (2014).CrossRefGoogle Scholar
  27. 27.
    T.A. Dar, A. Agrawal, and P. Sen, J. Nano-Electron. Phys. 5, 02024 (2013).Google Scholar
  28. 28.
    M. Rajan Philip, T.N. Narayanan, M.P. Kumar, S.B. Arya, and D.K. Pattanayak, J. Mater. Chem. A. 2, 19488 (2014).CrossRefGoogle Scholar
  29. 29.
    R. Elilarassi and G. Chandrasekaran, Am. J. Mater. Sci. 2, 46 (2012).CrossRefGoogle Scholar
  30. 30.
    S. Husain, F. Rahman, N. Ali, and P.A. Alvi, J. Optoelectron. Eng. 1, 28 (2013).Google Scholar
  31. 31.
    S. Ramachandran, J. Narayan, and J.T. Prater, Appl. Phys. Lett. 88, 242503 (2006).CrossRefGoogle Scholar
  32. 32.
    Z. Xiong, X.C. Liu, S.Y. Zhuo, J.H. Yang, E.W. Shi, and W.S. Yan, Appl. Phys. Lett. 99, 052513 (2011).CrossRefGoogle Scholar
  33. 33.
    X. Liu, F. Lin, L. Sun, W. Cheng, X. Ma, and W. Shi, Appl. Phys. Lett. 88, 062508 (2006).CrossRefGoogle Scholar
  34. 34.
    X.F. Liu and R.H. Yu, J. Appl. Phys. 102, 083917 (2007).CrossRefGoogle Scholar
  35. 35.
    B.B. Li, X.Q. Xiu, R. Zhang, Z.K. Tao, L. Chen, Z.L. Xie, Y.D. Zheng, and Z. Xie, Mater. Sci. Semicond. Process. 9, 141 (2006).CrossRefGoogle Scholar
  36. 36.
    H. Liu, F. Zeng, Y. Lin, G. Wang, and F. Pan, Appl. Phys. Lett. 102, 181908 (2013).CrossRefGoogle Scholar
  37. 37.
    M.Y. Ghotbi, Particuology 10, 492 (2012).CrossRefGoogle Scholar
  38. 38.
    R. Chandramohan, M. Karunakaran, S. Balamurali, S. Gomathi, K. Kabila, and T. Mahalingam, Int. J. Thin Films Sci. Technol. 3, 61 (2014).CrossRefGoogle Scholar
  39. 39.
    P.K. Sharma, R.K. Dutta, and A.C. Pandey, J. Magn. Magn. Mater. 321, 3457 (2009).CrossRefGoogle Scholar
  40. 40.
    G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes, Nano Lett. 6, 215 (2006).CrossRefGoogle Scholar
  41. 41.
    K.P. Wang and H. Teng, Appl. Phys. Lett. 91, 173102 (2007).CrossRefGoogle Scholar
  42. 42.
    V. Biju and M. Abdul, Khadar. J. Mater. Sci. 36, 5779 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Moab Rajan Philip
    • 1
  • Rupesh Babu
    • 2
  • Krishnakumar Vasudevan
    • 2
  • Hieu Pham Trung Nguyen
    • 1
    Email author
  1. 1.Department of Electrical and Computer EngineeringNew Jersey Institute of TechnologyNewarkUSA
  2. 2.Central Scientific Industrial Research - Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations