Advertisement

Effect of Thermal Annealing on the Electrical Properties of Inverted Organic Solar Cells Based on PCDTBT: PC70BM Nanocomposites

  • Asya Mhamdi
  • Fatma Ben Slama Sweii
  • Abdelaziz Bouazizi
Article

Abstract

Inverted organic solar cells based on poly[N-90 0-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)/[6,6]-phenyl-C61-butyric acid methyl ester [PCDTBT: PC70BM] bulk-heterojunction (BHJ) were elaborated. We have studied the effects of thermal annealing of PCDTBT: PC70BM active layer on electrical properties in dark condition of different elaborated inverted structures. The PCDTBT: PC70BM thin film was sandwiched between indium tin oxide (ITO)/ZnO front and PEDOT:PSS/aluminum (Al) back electrodes in which PEDOT:PSS was a hole transporting layer (HTL) and ZnO was an electron transport layer (ETL). The elaborated inverted device structure was ITO/ZnO/PCDTBT: PC70BM/PEDOT:PSS/Al. The active layer of organic devices were annealed at different temperatures: as cast, 70°C, 110°C, 150°C and 190°C. In this study, we aimed to elaborate inverted organic solar cells (OSCs) with better electrical parameters for photovoltaic applications using different temperatures. The electrical properties have been studied using JV measurement in dark condition. The different electrical parameters, such as the barrier height ϕb, the ideality factor n and the series resistance Rs, were calculated. The experimental result shows that these parameters depended strongly on the annealing temperature.

Keywords

Organic solar cells inverted structure PCDTBT: PC70BM ZnO electrical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Søndergaard, M. Hösel, D. Angmo, Thue T. Larsen-Olsen, and F.C. Krebs, Mater. Today 15, 36 (2012).CrossRefGoogle Scholar
  2. 2.
    H.F. Dam, T.R. Andersen, M.V. Madsen, T.K. Mortensen, M.F. Pedersen, U. Nielsen, and F.C. Krebs, Sol. Energy Mater. Sol. C 140, 187 (2015).CrossRefGoogle Scholar
  3. 3.
    F.C. Krebs, T. Tromholt, and M. Jørgensen, Nanoscale 2, 873 (2010).CrossRefGoogle Scholar
  4. 4.
    N. Chandera, S. Singhb, and S. Sundar Kumar Iyer, Sol. Energy Mater. Sol. C 161, 407 (2017).CrossRefGoogle Scholar
  5. 5.
    E.A. Parlak, Sol. Energy Mater. Sol. C 100, 174 (2012).CrossRefGoogle Scholar
  6. 6.
    Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, M. Giles, I. McCulloch, C.-S. Ha and M. Ree, Nat. Mater. 5, 197 (2006).Google Scholar
  7. 7.
    N. Blouin, A. Michaud, and M. Leclerc, Adv. Mater. 19, 2295 (2007).CrossRefGoogle Scholar
  8. 8.
    S.H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, and A.J. Heeger, Nat. Photon. 3, 297 (2009).CrossRefGoogle Scholar
  9. 9.
    Y. Sun, C.J. Takacs, S.R. Cowan, J.H. Seo, X. Gong, A. Roy, and A.J. Heeger, Adv. Mater. 23, 2226 (2011).CrossRefGoogle Scholar
  10. 10.
    S. Cho, J.H. Seo, S.H. Park, S. Beaupré, M. Leclerc, and A.J. Heeger, Adv. Mater. 22, 1253 (2010).CrossRefGoogle Scholar
  11. 11.
    C.W. Chu, H. Yang, W.J. Hou, J. Huang, G. Li, and Y. Yang, Appl. Phys. Lett. 92, 86 (2008).Google Scholar
  12. 12.
    Y. Liang, Z. Xu, J. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, 135 (2010).CrossRefGoogle Scholar
  13. 13.
    Y.J. He, Y. Zhou, G.J. Zhao, J. Min, X. Guo, B. Zhang, M.J. Zhang, J. Zhang, Y.F. Li, F.L. Zhang, and O. Inganas, J Polym Sci Pol Chem. 48, 1822 (2010).CrossRefGoogle Scholar
  14. 14.
    O. Dhibi, A. Ltaief, and A. Bouazizi, Mater. Sci. Semicond. Proc. 25, 173 (2013).CrossRefGoogle Scholar
  15. 15.
    D.I. Kutsarov, E. New, F. Bausi, A.Z. Lemanczyk, F.A. Castro, and S.R.P. Silva, Data Brief 11, 44 (2017).CrossRefGoogle Scholar
  16. 16.
    K.D.G.I. Jayawardena, C.A. Rozanski, M.J. Mills, N.A. Beliatis, and S.R.P. Silva, Nanoscale 5, 8411 (2013).CrossRefGoogle Scholar
  17. 17.
    G. Chen, J. Seo, C. Yang, and P.N. Prasad, Chem. Soc. Rev. 42, 8304 (2013).CrossRefGoogle Scholar
  18. 18.
    E. Bundgaard and F.C. Krebs, Sol. Energy Mater. Sol. Cells 91, 954 (2007).CrossRefGoogle Scholar
  19. 19.
    A. Iwan and A. Chuchmała, Prog. Polym. Sci. 37, 1805 (2012).CrossRefGoogle Scholar
  20. 20.
    O. Synooka, K.R. Eberhardt, C.R. Singh, F. Hermann, G. Ecke, B. Ecker, Ev Hauff, G. Gobsch, and H. Hoppe, Adv. Energy Mater. 4, 1300981 (2013).CrossRefGoogle Scholar
  21. 21.
    F. Etzold, I.A. Howard, R. Mauer, M. Meister, T.D. Kim, K.S. Lee, N.S. Baek, and F. Laquai, J. Am. Chem. Soc. 133, 9469 (2011).CrossRefGoogle Scholar
  22. 22.
    M.P. de Jong, L.J. van Ijzendoorn, and M.J.A. de Voigt, Appl. Phys. Lett. 77, 2255 (2000).CrossRefGoogle Scholar
  23. 23.
    K.W. Wong, H.L. Yip, Y. Luo, K.Y. Wong, W.M. Lau, K.H. Low, H.F. Chow, Z.Q. Gao, W.L. Yeung, and C.C. Chang, Appl. Phys. Lett. 80, 2788 (2002).CrossRefGoogle Scholar
  24. 24.
    Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photon. 6, 591 (2012).CrossRefGoogle Scholar
  25. 25.
    Q. Wan, X. Guo, Z. Wang, W. Li, B. Guo, W. Ma, M. Zhang, and Y. Li, Adv. Mater. 26, 6635 (2016).Google Scholar
  26. 26.
    S. Chen, J.R. Manders, S.-W. Tsang, and F. So, J. Mater. Chem. 22, 24202 (2012).CrossRefGoogle Scholar
  27. 27.
    K. Zilberberg, J. Meyerb, and T. Riedl, J. Mater. Chem. C 1, 4796 (2013).CrossRefGoogle Scholar
  28. 28.
    P. Morvillo, R. Diana, G. Nenna, E. Bobeico, R. Ricciardi, and C. Minarini, Thin Solid Films 617, 126 (2016).CrossRefGoogle Scholar
  29. 29.
    M.N. Kamalasanan and S. Chandra, Thin Solid Films 288, 112 (1996).CrossRefGoogle Scholar
  30. 30.
    O. Dhibi, A. Ltaief, S. Zghal, and A. Bouazizi, Superlattice Microstruct. 60, 548 (2013).CrossRefGoogle Scholar
  31. 31.
    A. Iwana, M. Palewiczb, I. Tazbira, B. Boharewicza, R. Pietruszkac, M.L. Filapekd, J. Wojtkiewicze, B.S. Witkowskic, F. Granekb, and M. Godlewskic, Electrochim. Acta 191, 784 (2016).CrossRefGoogle Scholar
  32. 32.
    A. Mhamdi, A. Ltaief, and A. Bouazizi, J. Mol. Struct. 1145, 81 (2017).CrossRefGoogle Scholar
  33. 33.
    X. Zhu, F. Zhang, Q. An, H. Huang, Q. Sun, L. Li, F. Teng, and W. Tang, Sol. Energy Mater. Sol. C 132, 528 (2015).CrossRefGoogle Scholar
  34. 34.
    A. Gusain, V. Saxena, P. Veerender, P. Jha, S.P. Koiry, A.K. Chauhan, D.K. Aswal, and S.K. Gupta, AIP Conf. Proc. 1512, 776 (2013).CrossRefGoogle Scholar
  35. 35.
    W. Aloui, T. Adhikari, J.M. Nunzi, and A. Bouazizi, Mater. Sci. Semicond. Proc. 39, 575 (2015).CrossRefGoogle Scholar
  36. 36.
    K. Burak, A. Hassan, and W. Cranton, J. Mater. Sci. Mater. El 27, 7038 (2016).CrossRefGoogle Scholar
  37. 37.
    A. Keffous, M. Siad, S. Mamma, Y. Belkacem, C. Lakhdar Chaouch, H. Menari, A. Dahmani, and W. Chergui, Appl. Surf. Sci. 218, 337 (2003).CrossRefGoogle Scholar
  38. 38.
    A. Walid, A. Ltaief, and A. Bouazizi, Mater. Sci. Semicond. Proc. 27, 170 (2014).CrossRefGoogle Scholar
  39. 39.
    S. Sanyal and P. Chattopadhyay, Solid-State Electron. 45, 315 (2001).CrossRefGoogle Scholar
  40. 40.
    S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).CrossRefGoogle Scholar
  41. 41.
    S. Besbes, A. Ltaief, K. Reybier, L. Ponsonnet, N. Jaffrezic, J. Davenas, and H. Ben Ouada, Synthetic Met. 138, 197 (2003).CrossRefGoogle Scholar
  42. 42.
    Rashmi, A.K. Kapoor, S. Annapoorni, and V. Kumar, Semicond. Sci. Tech. 23, 035008 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Asya Mhamdi
    • 1
  • Fatma Ben Slama Sweii
    • 1
  • Abdelaziz Bouazizi
    • 1
  1. 1.Équipe Dispositifs Électroniques Organiques et Photovoltaïque Moléculaire, Laboratoire de la Matière Condensée et des Nanosciences, Faculté des Sciences de MonastirUniversité de Monastir Avenue de l’environnementMonastirTunisia

Personalised recommendations