Journal of Electronic Materials

, Volume 48, Issue 1, pp 72–78 | Cite as

Room Temperature Bonding on Interface Between Metal and Ceramic

  • Kyu-Bong Jang
  • Sungwook Mhin
  • Sung-Chul Lim
  • Young-Sik Song
  • Keun-Hyo Lee
  • Soo-Keun Park
  • Kyoung-Il Moon
  • Seung Hwan Lee
  • Soong-Keun Hyun
TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
Part of the following topical collections:
  1. TMS2018 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder


The influence of surface activated bonding (SAB) on adhesion strength between a metal and ceramic including Al/AlN and Cu/AlN is investigated. Plasma pre-treatments can significantly increase the adhesion strength between the metal and ceramic through surface activation, which can enlarge the contact area between metal and ceramic. Bonding pressure is also an important factor to improve the adhesion between metal and ceramic during SAB. Successful bonding between the metal and ceramic via SAB can be attributed to the formation of the interface layer where plastic deformation and rearrangement of metal to the ceramic occurs, which improves the atomic scale interconnection between the metal and ceramic. In this study, the influence of experimental SAB conditions for processing such as plasma power, degree of vacuum and bonding pressure on adhesion strength is investigated. Also, the thermal conduction of metal/ceramic laminates is discussed for its potential application as a heat spreader of LED chips.


Surface activated bonding plasma pre-treatment adhesion strength processing conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.H. Cheng, D.S. Huang, and M.T. Lin, Microelectron. Reliab. 52, 905 (2012).CrossRefGoogle Scholar
  2. 2.
    X. Luo, R. Hu, S. Liu, and K. Wang, Prog. Energy Combust. Sci. 56, 1 (2016).CrossRefGoogle Scholar
  3. 3.
    R. Vairavan, Z. Sauli, V. Retnasamy, and H. Kamarudin, AEB 7, 3634 (2013).Google Scholar
  4. 4.
    N. Narendran, Y. Gu, J.P. Freyssinier, H. Yu, and L. Deng, J. Cryst. Growth 268, 449 (2004).CrossRefGoogle Scholar
  5. 5.
    N. Narendran and Y. Gu, J. Disp. Technol. 1, 167 (2005).CrossRefGoogle Scholar
  6. 6.
    T. Tamura, T. Setomoto, and T. Taguchi, J. Lumin. 87, 1180 (2000).CrossRefGoogle Scholar
  7. 7.
    E. Hong and N. Narendran, in SPIE Conference Proceedings (2004), pp. 93–99.Google Scholar
  8. 8.
    H.H. Kim, S.H. Choi, S.H. Shin, Y.K. Lee, S.M. Choi, and S. Yi, Microelectron. Reliab. 48, 444 (2008).Google Scholar
  9. 9.
    A. Christensen and S. Graham, Appl. Therm. Eng. 29, 364 (2009).CrossRefGoogle Scholar
  10. 10.
    B.J. Huang, C.W. Tang, and M.S. Wu, Appl. Therm. Eng. 29, 609 (2009).CrossRefGoogle Scholar
  11. 11.
    S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).CrossRefGoogle Scholar
  12. 12.
    R. Könenkamp, R.C. Word, and C. Schlege, Appl. Phys. Lett. 85, 6004 (2004).CrossRefGoogle Scholar
  13. 13.
    R.R. Tummala, E.J. Rymaszewski, and A.G. Klopfenstein, Microelectronics Packaging Handbook: Subsystem Packaging, Part 3, 3rd ed. (Dordrecht: Kluwer, 2001), pp. 85–86.Google Scholar
  14. 14.
    C.I. Nicholls and H.M. Rosenberg, J. Phys. C 17, 1165 (1984).CrossRefGoogle Scholar
  15. 15.
    J.K. Kim, J.W. Kim, M.I. Kim, and M.S. Song, Macromol. Res. 14, 517 (2006).CrossRefGoogle Scholar
  16. 16.
    M. Hussain, Y. Oku, A. Nakahira, and K. Niihara, Mater. Lett. 26, 177 (1996).CrossRefGoogle Scholar
  17. 17.
    P. Bujard, G. Kühlein, S. Ino, and T. Shiobara, in ECTC Conference Proceedings (1994), pp. 527–532.Google Scholar
  18. 18.
    Y. Xu, D.D.L. Chung, and C. Mroz, Compos. Part A. Appl. Sci. Manuf. 32, 1749 (2001).CrossRefGoogle Scholar
  19. 19.
    W. Kim, J.W. Bae, I.D. Choi, and Y.S. Kim, Polym. Eng. Sci. 39, 756 (1999).CrossRefGoogle Scholar
  20. 20.
    A. Abed, I.S. Jalham, and A. Hendry, J. Eur. Ceram. Soc. 21, 283 (2001).CrossRefGoogle Scholar
  21. 21.
    K.S. Lee, KSME Int. J 17, 1928 (2003).CrossRefGoogle Scholar
  22. 22.
    M. Entezarian and R.A.L. Drew, Mater. Sci. Eng. A 212, 206 (1996).CrossRefGoogle Scholar
  23. 23.
    J.S. Pimenta, A.J.A. Buschinelli, R.M.D. Nascimento, A.E. Martinelli, and J. Remmel, J. Braz. Soc. Mech. Sci. Eng. 32, 468 (2010).CrossRefGoogle Scholar
  24. 24.
    A.K. Jadoon, B. Ralph, and P.R. Hornsby, J. Mater. Process. Technol. 152, 257 (2004).CrossRefGoogle Scholar
  25. 25.
    J. Cao, J. Liu, X. Song, X. Lin, and J. Feng, Mater. Des. 56, 115 (2014).CrossRefGoogle Scholar
  26. 26.
    T. Suga, K. Miyazawa, and Y. Takakashi, J. Jpn. Inst. Met. 54, 935 (1990).Google Scholar
  27. 27.
    T. Akatsu, N. Hosoda, T. Suga, and M. Ruhle, Mater. Sci. Forum 329, 294 (1999).Google Scholar
  28. 28.
    T. Suga, in LTB-3D Conference Proceedings (2012), pp. 7–10.Google Scholar
  29. 29.
    M.M.R. Howlader, F. Zhang, M.J. Deen, and T. Suga, J. Vac. Sci. Technol. A 29, 021007 (2011).CrossRefGoogle Scholar
  30. 30.
    C.J.H. Helmereich, R. Corbin, and S.M. McDeavitt, J. Nucl. Mater. 446, 100 (2014).CrossRefGoogle Scholar
  31. 31.
    A. Poppe and C.J. Lasance, in SEMI-THERM Conference Proceedings (2009), pp. 151–158.Google Scholar
  32. 32.
    T. Akatsu, N. Hosoda, T. Suga, and M. Rühle, Mater. Sci. Forum 329, 294 (1999).Google Scholar
  33. 33.
    T. Akatsu, N. Hosoda, T. Suga, and M. Rühle, J. Mater. Sci. 34, 4133 (1999).CrossRefGoogle Scholar
  34. 34.
    T.H. Kim, M.M.R. Howlader, T. Itoh, and T. Suga, J. Vac. Sci. Technol. A 21, 449 (2003).CrossRefGoogle Scholar
  35. 35.
    H. Chen, H. Wei, M. Chen, F. Meng, H. Li, and Q. Li, Appl. Surf. Sci. 283, 525 (2013).CrossRefGoogle Scholar
  36. 36.
    F. Meydaneri, B. Saatçi, M. Gündüz, and M. Özdemir, Continuum Mech. Thermodyn. 25, 691 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringInha UniversityIncheonKorea
  2. 2.Korea Institute of Industrial TechnologySiheung-siKorea
  3. 3.School of Aerospace and Mechanical EngineeringKorea Aerospace UniversityGoyangsiKorea

Personalised recommendations