Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 58–71 | Cite as

Nucleation and Growth of Tin Hillocks by In Situ Nanoindentation

  • Irene Lujan-Regalado
  • Antony Kirubanandham
  • Jason J. Williams
  • Nikhilesh ChawlaEmail author
TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • 43 Downloads
Part of the following topical collections:
  1. TMS2018 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder

Abstract

For several decades, tin whiskers have been a major reliability issue in the microelectronics industry. These single crystalline tin filaments can grow long enough to cause short circuiting and device failure. Although tin whisker/hillock growth is driven by compressive stresses, a mechanistic model of their formation, evolution, and microstructural influence has not been fully developed. In this work, the growth of mechanically induced tin whiskers/hillocks was studied using an in situ nanoindenter and electron backscatter diffraction in a dedicated scanning electron microscope. Electroplated Sn-on-Cu samples were indented and monitored in vacuum to study their growth behavior without the influence of atmosphere. Aging experiments were conducted to study the effect of intermetallics on hillock growth. The grain orientation of the hillocks and the plastically deformed area surrounding the indentation were studied on slabs lifted out of the sample with the use of focused ion beam. High-angle grain boundaries were seen to favor the formation of Sn hillocks. A finite element model was developed to study the evolution of the compressive stress state in the Sn plating and the results showed good agreement with the experimental results.

Keywords

Tin whiskers hillocks FIB nanoindentation recrystallization EBSD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Financial support from the National Council of Science and Technology of Mexico (Consejo Nacional de Ciencia y Tecnologia—CONACyT) is gratefully acknowledged. The authors acknowledge the use of FIB-SEM facilities at the Leroy Eyring Center for Solid State Science and the Center for 4D Materials Science at Arizona State University. The authors are thankful to Dr. Carl Mayer, Dr. Renuka Vallabhaneni, and Dr. Shashank Kaira for assistance with FIB lift-outs and technical discussions.

References

  1. 1.
    K.N. Tu, Phys. Rev. B 49, 3 (1994).Google Scholar
  2. 2.
    M. Sampson, Tin Whisker (and Other Metal Whisker) Homepage (2009). http://nepp.nasa.gov/whisker/backgrou nd/index.htm. Accessed 25 Mar 2018.
  3. 3.
    V.G. Karpov, SMT Mag. 30, 2 (2015).Google Scholar
  4. 4.
    A.C. Vasko, C.R. Grice, A.D. Kostik, and V.G. Karpov, MRS Commun. 5, 04 (2015).CrossRefGoogle Scholar
  5. 5.
    M. Schlesinger and M. Paunovic, Modern Electroplating, Vol. 55 (New York: Wiley, 2011), pp. 433–446.Google Scholar
  6. 6.
    M. Warwick, J. SMTA 12, 1 (1999).Google Scholar
  7. 7.
    J.J. Williams, N.C. Chapman, and N. Chawla, JEM 42, 2 (2012).Google Scholar
  8. 8.
    R. Weil, Plating 58, 1 (1971).Google Scholar
  9. 9.
    W.J. Boettinger, C.E. Johnson, L.A. Bendersky, and K.W. Moon, Acta Mater. 53, 19 (2005).Google Scholar
  10. 10.
    C. Xu, Y. Zhang, C. Fan, and J.A. Abys, IEEE Trans. Electron. Packag. Manuf. 28, 1 (2005).CrossRefGoogle Scholar
  11. 11.
    T. Shibutani, Q. Yu, T. Yamashita, and M. Shiratori, IEEE Trans. Electron. Packag. Manuf. 29, 4 (2006).CrossRefGoogle Scholar
  12. 12.
    K.N. Tu, C. Chen, and A.T. Wu, J. Mater. Sci. Mater. Electron. 18, 1 (2006).CrossRefGoogle Scholar
  13. 13.
    N. Jadhav, E.J. Buchovecky, L. Reinbold, S. Kumar, A.F. Bower, and E. Chason, IEEE Trans. Electron. Packag. Manuf. 33, 3 (2010).CrossRefGoogle Scholar
  14. 14.
    S.K. Kang, J. Chang, J.H. Lee, K.S. Kim, and H.M. Lee, in Electronic Components and Technology Conference (ECTC) IEEE 63rd. (2013), pp. 1018–1023.Google Scholar
  15. 15.
    S.K. Lin, Y. Yorikado, J. Jiang, K.S. Kim, K. Suganuma, S.W. Chen, M. Tsujimoto, and I. Yanada, JMR 22, 7 (2007).Google Scholar
  16. 16.
    S.K. Lin, Y. Yorikado, J. Jiang, K.S. Kim, K. Suganuma, S.W. Chen, M. Tsujimoto, and I. Yanada, JEM 36, 12 (2007).Google Scholar
  17. 17.
    K. Doudrick, J. Chinn, J. Williams, N. Chawla, and K. Rykaczewski, Microelectron. Reliab. 55, 5 (2015).CrossRefGoogle Scholar
  18. 18.
    R. Vallabhaneni, E. Izadi, C.R. Mayer, C.S. Kaira, S.S. Singh, J. Rajagopalan, and N. Chawla, Microelectron. Reliab. 79 (2017).Google Scholar
  19. 19.
    M.A. Dudek and N. Chawla, Acta Mater. 57, 4588 (2009).CrossRefGoogle Scholar
  20. 20.
    Y. Mizuguchi, Y. Murakami, S. Tomiya, T. Asai, T. Kiga, and K. Suganuma, J. Electron. Mater. 41, 7 (2012).CrossRefGoogle Scholar
  21. 21.
    C. Hillman, G. Kittlesen, and R. Schueller, A new (better) approach to tin whisker mitigation, DfR Solutions White Paper (2011).Google Scholar
  22. 22.
    A. Kirubanandham, I. Lujan-Regalado, R. Vallabhaneni, and N. Chawla, JOM 68, 11 (2016).CrossRefGoogle Scholar
  23. 23.
    B. Illés, B. Horváth, and G. Harsányi, Surf. Coat. Technol. 205, 7 (2010).CrossRefGoogle Scholar
  24. 24.
    H.Y. Hsiao, C.M. Liu, H.W. Lin, T.C. Liu, C.L. Lu, Y.S. Huang, C. Chen, and K.N. Tu, Science 336, 6084 (2012).CrossRefGoogle Scholar
  25. 25.
    A. Gusak and K.N. Tu, Phys. Rev. B Condens. Matter 66, 11 (2002).CrossRefGoogle Scholar
  26. 26.
    J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, and D.A. Hutt, Acta Mater. 54, 11 (2006).CrossRefGoogle Scholar
  27. 27.
    X. Deng, G. Piotrowski, J.J. Williams, and N. Chawla, J. Electron. Mater. 32, 12 (2003).CrossRefGoogle Scholar
  28. 28.
    P. Jagtap, A. Chakraborty, P. Eisenlohr, and P. Kumar, (2017) Acta Mater. 134, 346 (2017).Google Scholar
  29. 29.
    P. Sarobol, W.H. Chen, A.E. Pedigo, P. Su, J.E. Blendell, and C.A. Handwerker, J. Mater. Res. 28, 5 (2013).Google Scholar
  30. 30.
    X. Deng, N. Chawla, K.K. Chawla, and M. Koopman, Acta Mater. 16, 52 (2004).Google Scholar
  31. 31.
    S. Jeong, N. Murata, Y. Sato, K. Suzuki, and H. Miura, Trans. Jpn. Inst. Electron. Packag. 2, 1 (2009).CrossRefGoogle Scholar
  32. 32.
    K. Tanida, M. Umemoto, N. Tanaka, Y. Tomita, and K. Takahashi, Jpn. J. Appl. Phys. 43, 4S (2004).CrossRefGoogle Scholar
  33. 33.
    K.E. Yazzie, J.J. Williams, and N. Chawla, J. Electron. Mater. 41, 9 (2012).CrossRefGoogle Scholar
  34. 34.
    S. Sawada, K. Shimizu, S. Shimada, and Y. Hattori, SEI Tech. Rev. 71 (2010).Google Scholar
  35. 35.
    P.F. Yang, Y.-S. Lai, S.-R. Jian, J. Chen, and R.-S. Chen, Mater. Sci. Eng. A 485, 305 (2008).CrossRefGoogle Scholar
  36. 36.
    G.Y. Jang, J.W. Lee, and J.G. Duh, J. Electron. Mater. 33, 10 (2004).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Irene Lujan-Regalado
    • 1
  • Antony Kirubanandham
    • 1
    • 2
  • Jason J. Williams
    • 1
  • Nikhilesh Chawla
    • 1
    Email author
  1. 1.Center for 4D Materials Science, Materials Science and EngineeringArizona State UniversityTempeUSA
  2. 2.Assembly and Test Technology DevelopmentIntel CorporationChandlerUSA

Personalised recommendations