Journal of Electronic Materials

, Volume 47, Issue 12, pp 7196–7203 | Cite as

Effect of Gamma Radiation Induced on Structural, Electrical, and Optical Properties of N, N′-Dimethyl-3,4,9, 10-Perylenedicarboximide Nanostructure Films

  • A. A. A. Darwish
  • Saleem I. QashouEmail author
  • Z. Khattari
  • Mustafa M. Hawamdeh
  • Allayth Aldrabee
  • S. E. Al Garni


N,N′-Dimethyl-3,4,9,10-perylenedicarboximide (PTCDI-C1) thin films were first prepared by thermal evaporation technique. Then, the prepared films were irradiated with gamma rays at room temperature with different absorbed doses. The structure of PTCDI-C1 films at different doses of gamma radiation was elucidated by x-ray diffraction. The results confirmed that PTCDI-C1 film has a nanostructure morphology. The grain size was observed to decrease slightly with increasing the gamma radiation doses. The temperature dependence of the electrical conductivity was measured in the temperature range of 293–423 K. It was found that the obtained activation energy of PTCDI-C1 films decreased with increasing gamma radiation dose. The optical parameters were obtained using spectrophotometric measurements. The single oscillator model of Wemple–Didomenico was adopted to study the normal dispersion of refractive index. The optical dispersion parameters of PTCDI-C1 films such as dispersion energy, oscillator energy and the high frequency dielectric constant were calculated. Furthermore, the nonlinear susceptibility values of PTCDI-C1 films at different gamma radiation dose were calculated. Also, the dielectric constants of the films were investigated in a large range of frequencies. The fundamental band gap energy values (3.91 eV < Eg2 < 4.00 eV) of PTCDI-C1 film were decreased with increasing of gamma radiation doses (150 kGy > Eg2 > 50 kGy).


Organic thin films gamma radiation optical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors are grateful to Eng. M. Etoom, director of Department of Gamma Irradiation Center at Jordan Atomic Energy Commission (JAEC) for carrying out the radiation Dosimetry measurements.


  1. 1.
    M. Biesaga, K. Pyrzynska, and M. Trojanowicz, Talanta 51, 209 (2000).CrossRefGoogle Scholar
  2. 2.
    M.M. El-Nahasss, K.F. Abd-El-Rahman, A.A.M. Farag, and A.A.A. Darwish, Int. J. Mod. Phys. B 18, 421 (2004).CrossRefGoogle Scholar
  3. 3.
    A. Tomkeviciene and J.V. Grazulevicius, Mater. Sci. 17, 335 (2011).Google Scholar
  4. 4.
    S.I. Qashou, M. Rashad, A.A.A. Darwish, and T.A. Hanafy, Opt. Quant. Electron. 49, 240 (2017).CrossRefGoogle Scholar
  5. 5.
    L. Schmidt-Mende, A. Fechtenkotter, K. Müllen, E. Moons, R.H. Friend, and J.D. Mac Kenzie, Science 293, 1119 (2001).CrossRefGoogle Scholar
  6. 6.
    W. Hu and M. Matsumura, J. Phys. D Appl. Phys. 37, 1434 (2004).CrossRefGoogle Scholar
  7. 7.
    M.M. El-Nahass, K.F. Abd El-Rahman, A.A.M. Farag, and A.A.A. Darwish, Org. Electron. 6, 129 (2005).CrossRefGoogle Scholar
  8. 8.
    C.M. Aguirre, S. Auvray, S. Pigeon, R. Izquiedro, P. Desjardins, and R. Matel, Appl. Phys. Lett. 88, 183104 (2006).CrossRefGoogle Scholar
  9. 9.
    B. Fraboni, R. DiPietro, A. Cavallini, P. Cosseddu, A. Bonfiglio, J.-O. Vogel, J.P. Rabe, and N. Koch, Org. Electron. 11, 273 (2010).CrossRefGoogle Scholar
  10. 10.
    S.E. Al Garni and A.A.A. Darwish, Sol. Energy Mater. Sol. Cells 160, 335 (2017).CrossRefGoogle Scholar
  11. 11.
    X. Zhang, Y. Wu, J. Li, F. Li, and M. Li, Dye Pigment. 76, 810 (2008).CrossRefGoogle Scholar
  12. 12.
    U. Haas, C. Thalacker, J. Adams, J. Furhmann, S. Reithmüller, U. Beginn, U. Ziener, M. Möller, R. Dobrawa, and F. Würthner, J. Mater. Chem. 13, 767 (2003).CrossRefGoogle Scholar
  13. 13.
    Y. Ma, C. Wang, Y. Zhao, Y. Yu, C. Han, X. Qui, and Z. Shi, Supramol. Chem. 19, 141 (2007).CrossRefGoogle Scholar
  14. 14.
    S. Benning, H.S. Kitzerow, H. Bock, and M.F. Archard, Liq. Cryst. 27, 901 (2000).CrossRefGoogle Scholar
  15. 15.
    P. Schouwink, G. Gadret, and R.F. Mahrt, Chem. Phys. Lett. 341, 213 (2001).CrossRefGoogle Scholar
  16. 16.
    M. Rębarz, M. Wojdyła, W. Bała, and Z. łukasiak, Opt. Mater. 30, 774 (2008).CrossRefGoogle Scholar
  17. 17.
    S. Pradhan, J. Redwine, J.T. McLeskey, and A. Dhar, Thin Solid Films 562, 423 (2014).CrossRefGoogle Scholar
  18. 18.
    Y. Huang, J. Wang, L. Fu, W. Kuang, and J. Shi, Sens. Actuators B 188, 411 (2013).CrossRefGoogle Scholar
  19. 19.
    F. Würthner, Chem. Commun. 14, 1564 (2004).CrossRefGoogle Scholar
  20. 20.
    S.I. Qashou, A.A.A. Darwish, M. Rashad, and Z. Khattari, Phys. B 525, 159 (2017).CrossRefGoogle Scholar
  21. 21.
    S.I. Qashou, A.A.A. Darwish, and S.E. Al Garni, Synth. Met. 242, 67 (2018).CrossRefGoogle Scholar
  22. 22.
    S.I. Qashou, S.E. Al Garni, A.A.A. Darwish, M.M. Hawamdeh, and A. Aldrabee, Optik 170, 540 (2018).CrossRefGoogle Scholar
  23. 23.
    S.R. Alharbi, A.A.A. Darwish, S.E. Al Garni, H.I. ElSaeedy, and K.F. Abd El-Rahman, Infrared Phys. Technol. 78, 77 (2016).CrossRefGoogle Scholar
  24. 24.
    A.A.A. Darwish and H.A.M. Ali, J. Alloys Compd. 710, 431 (2017).CrossRefGoogle Scholar
  25. 25.
    A.A.A. Darwish, M.M. El-Nahass, and M.H. Bahlol, Appl. Surf. Sci. 276, 210 (2013).CrossRefGoogle Scholar
  26. 26.
    Y. Ali, V. Kumar, R.G. Sonkawade, A.S. Dhaliwal, and H.C. Swar, Vacuum 99, 265 (2014).CrossRefGoogle Scholar
  27. 27.
    M.M. El-Nahass, H.M. Abd El-Khalek, and A.M. Nawar, Opt. Commun. 285, 1872 (2012).CrossRefGoogle Scholar
  28. 28.
    M.M. El-Nahass, K.F. Abd El-Rahman, A.A.M. Farag, and A.A.A. Darwish, Phys. Scr. 73, 40 (2006).CrossRefGoogle Scholar
  29. 29.
    D. Guo, X. Zu, G. Yang, J. Huang, F. Wang, H. Liu, X. Xiang, and X. Jiang, Opt. Mater. 54, 238 (2016).CrossRefGoogle Scholar
  30. 30.
    A.A.A. Darwish, Shams A.M. Issa, and M.M. El-Nahass, Synth. Met. 215, 200 (2016).CrossRefGoogle Scholar
  31. 31.
    K.M. Abhirami, R. Sathyamoorthy, and K. Asokan, Radiat. Phys. Chem. 91, 35 (2013).CrossRefGoogle Scholar
  32. 32.
    M.M. El-Nahass, K.F. Abd-El-Rahman, and A.A.A. Darwish, Eur. Phys. J. Appl. Phys. 48, 20402 (2009).CrossRefGoogle Scholar
  33. 33.
    V. Tsiper, Z.G. Soos, W. Gao, and A. Kahn, Chem. Phys. Lett. 360, 47 (2002).CrossRefGoogle Scholar
  34. 34.
    Y.O. Su, K.-Y. Chiu, and T.-H. Lin, J. Org. Chem. 70, 4323 (2005).CrossRefGoogle Scholar
  35. 35.
    J. Yao, T. Kirchartz, M.S. Vezie, M. Faist, W. Gong, Z. He, H. Wu, J. Troughton, T. Watson, D. Bryant, and J. Nelson, Phy. Rev. Appl. 4, 014020 (2015).CrossRefGoogle Scholar
  36. 36.
    A. Zunger, S. Wagner, and P.M. Petroff, J. Electron. Mater. 22, 1 (1993).CrossRefGoogle Scholar
  37. 37.
    M.M. El-Nahass, A.A.A. Darwish, E.F.M. El-Zaidia, and A.E. Bekheet, J. Non-Cryst. Solids 382, 74 (2013).CrossRefGoogle Scholar
  38. 38.
    M.M. El-Nahass, A.A.M. Farag, and F. Abd-El-Salam, Appl. Surf. Sci. 255, 9439 (2009).CrossRefGoogle Scholar
  39. 39.
    M.M. El-Nahass and A.M. Hassanien, Radiat. Phys. Chem. 97, 178 (2014).CrossRefGoogle Scholar
  40. 40.
    O. Stenzel, S. Wilbrant, A. Stendal, U. Beckers, K. Voigtsberger, and C. Von Borczskowski, J. Phys. D 28, 2154 (1995).CrossRefGoogle Scholar
  41. 41.
    H.M. Zeyada, M.M. Makhlouf, and M.M. El-Nahass, Spectrochim. Acta Part A 148, 338 (2015).CrossRefGoogle Scholar
  42. 42.
    L. Tichý, H. Tichá, P. Nagels, R. Callaerts, R. Mertens, and M. Vlček, Mater. Lett. 39, 122 (1999).CrossRefGoogle Scholar
  43. 43.
    M. Losurdo, M.M. Giangregorio, M. Luchena, P. Capezzuto, G. Bruno, R. Gtoro, G. Malandrio, L.I. Fragala, and R. Nigro, Appl. Surf. Sci. 253, 322 (2006).CrossRefGoogle Scholar
  44. 44.
    M.M. El-Nahass, H.M. Abd El-Khalek, and A.M. Nawar, Opt. Commun. 285, 1872 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Nanotechnology Research Laboratory, Department of Physics, Faculty of ScienceUniversity of TabukTabukSaudi Arabia
  2. 2.Department of Physics, Faculty of Education at Al-MahweetSana’a UniversityAl-MahweetYemen
  3. 3.Department of Physics, Faculty of ScienceHashemite UniversityZarqaJordan
  4. 4.Department of Physics and Basic Sciences, Faculty of Engineering TechnologyAl-Balqa Applied UniversityAmmanJordan
  5. 5.Nuclear Sciences and Applications CommissionJordan Atomic Energy CommissionAmmanJordan
  6. 6.Physics Department, Faculty of Science AL FaisaliahKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations