Journal of Electronic Materials

, Volume 47, Issue 12, pp 7053–7061 | Cite as

Joining Using Reactive Films for Electronic Applications: Impact of Applied Pressure and Assembled Materials Properties on the Joint Initial Quality

  • Rabih KhazakaEmail author
  • Donatien Martineau
  • Stéphane Azzopardi


The use of local and rapid heating of electronic assemblies can significantly reduce the degradation of temperature-sensitive materials and substrate bowing commonly encountered in electronic applications during the high temperature reflow process. It can also allow assembling electronic packages on a non-planar surface and/or on massive structures that are very complex using a conventional oven for soldering. In order to attach electronic components to substrates, a rapid soldering process using an exothermic reactive foil sandwiched between solder preforms was evaluated. Once the film was activated and reacted, the solder preforms were melted to ensure the adhesion between the assembled materials. The effect of applied pressure on the joint quality, the reactive film thickness, as well as the attached material thickness and physical properties were assessed. Using a 60 μm thick reactive foil with two 25 μm thick SnAgCu305 preforms, results show that the fraction of void-free interfacial area between a metallized diode and an active metal braze substrate increased from 34% to 74% with pressure values between 0.5 kPa and 100 kPa, respectively. At a constant pressure of 13 kPa, increasing the reactive foil thickness from 40 μm to 60 μm leads to an increase in the void-free interfacial attach area ratio from 20% to 40%, and a value of 54% was achieved by using two 60 μm foils under the same conditions. The substrate metallization and solder thickness also affect the joint quality. The experimental results are analyzed and correlated with the duration of liquid solder using thermal models.


Reactive film nanolayers soldering joint quality melting duration high temperature electronics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Kyung-ah, L. Anna, L. Gerald, G. Manuel, H. Toshiro, H. Richard, S. Leif, and S. William, Nanosci. Nanotechnol. Lett. 2, 2 (2010).Google Scholar
  2. 2.
    T. Funaki, J. C. Balda, J. Junghans, A. A. Kashyap, F.D. Barlow, H. A. Mantooth, T. Kimoto, and T. Hikihara, IEICE Electron Express 1, 523 (2004).Google Scholar
  3. 3.
    V.R. Manikam and K.Y. Cheong, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 4 (2011).CrossRefGoogle Scholar
  4. 4.
    C. Buttay, A, Masson, J. Li, M. Johnson, M. Lazar, C Raynaud, and H. Morel, IMAPS High Temperature Electronics Network HITEN, pp. 1–7 (2011).Google Scholar
  5. 5.
    M. Knoerr, S. Kraft, and A. Schletz, in 12th Electronics Packaging Technology Conference (2010).
  6. 6.
    S.J. Pearton, J.C. Zolper, R.J. Shul, and F. Re, J. Appl. Phys. 86, 1 (1999).CrossRefGoogle Scholar
  7. 7.
    P. Neudeck, R. Okojie, and L. Chen, Proc. IEEE 90, 6 (2002). Scholar
  8. 8.
    R. Khazaka, L. Mendizabal, D. Henry, and R. Hanna, IEEE Trans. Power Electron. 30, 5 (2015).Google Scholar
  9. 9.
    P. Hagler, P. Henson, and R.W. Johnson, IEEE Trans. Ind. Electron. 58, 7 (2011).CrossRefGoogle Scholar
  10. 10.
    J. Wang, E. Besnoin, O.M. Knio, and T.P. Weihs, J. Appl. Phys. 97, 114307 (2005).CrossRefGoogle Scholar
  11. 11.
    R. Khazaka, L. Mendizabal, and D. Henry, J. Electron. Mater. 43, 7 (2014).CrossRefGoogle Scholar
  12. 12.
    R. Khazaka, B. Thollin, L. Mendizabal, D. Henry, R. Khazaka, and R. Hanna, IEEE Trans. Device Mater. Rel. 15, 2 (2015).CrossRefGoogle Scholar
  13. 13.
    M. Zenou, O. Ermak, A. Saar, and Z.Kotler, J.Phys. D Appl. Phys. 47, 025501 (2014).Google Scholar
  14. 14.
    S. Magdassi, M. Grouchko, and A. Kamyshny, Materials. (2010). Scholar
  15. 15.
    T. Wang, X. Chen, G.Q. Lu, and G.Y. Lei, J. Electron. Mater. 36, 10 (2007).Google Scholar
  16. 16.
    K. Schnabl, L. Wentlent, K. Mootoo, S. Khasawneh, A. Zinn, J. Beddow, E. Hauptfleisch, D. Blass, and P. Borgensen, J. Electron. Mater. 43, 12 (2014).CrossRefGoogle Scholar
  17. 17.
    P. Świerzy, Y. Farraj, A. Kamyshny, and S. Magdassi, Colloids Surf. A 521, 272 (2017).Google Scholar
  18. 18.
    X. Yu, J. Li, T. Shi, C. Cheng, G. Liao, J. Fan, T. Li, and Z. Tang, J. Alloys Comp. 724, 365 (2017)Google Scholar
  19. 19.
    G.Q. Lu, W. Li, Y. Mei, G. Chen, X. Li, and X. Chen, IEEE Trans. Device Mater. Reliab. 14, 2 (2014).CrossRefGoogle Scholar
  20. 20.
    W.C. Welch and K. Najafi, in IEEE International Conference on Micro Electro Mechanical Systems proceeding (2008).
  21. 21.
    T. Hu, H. Chen, M. Li, and Z. Zhao, IEEE Trans. Power Electron 32, 1 (2016).Google Scholar
  22. 22.
    J. Wang, E. Besnoin, O.M. Knio, and T.P. Weihs, J. Appl. Phys. 95, 1 (2004).CrossRefGoogle Scholar
  23. 23.
    X. Qiu, Reactive Multilayer Foils and Their Applications in Joining, Master Thesis at Louisiana State University (2007).Google Scholar
  24. 24.
    R. Diehm, M. Nowottnick, and U. Pape, IPC APEX EXPO vol. 1, pp. 425–442 (2012)Google Scholar
  25. 25.
    J. Wang, E. Besnoin, O.M. Knio, and T.P. Weihs, Acta Mater. 52, 5235 (2004).Google Scholar
  26. 26.
    R. Dou, T. Ge, X. Liu, and Z. Wen, Int. J. Heat Mass Transf. 94, 156 (2016).Google Scholar
  27. 27.
    N. Zhao, X.M. Pan, D.Q. Yu, H.T. Ma, and L. Wang, J. Electron. Mater. 38, 6 (2009).Google Scholar
  28. 28.
    J. Chang, L. Wang, J. Dirk, and X. Xie, Weld. J. 85, 63 (2006).Google Scholar
  29. 29.
    Military Standard, Test Methods standard microcircuits, Mil-Std-883E Method 2030, Ultrasound inspection of die attach (1996).Google Scholar
  30. 30.
    K. Otiaba, R. Bhatti, N. Ekere, S. Mallik, E. Amalu, and M. Ekpu, in 3rd IEEE International Conference on Adaptive Science and Technology ICAST (2011).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Safran SA, Safran TechMagny-les-HameauxFrance

Personalised recommendations