Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 182–193 | Cite as

Phase-Field Study of Electromigration-Induced Shape Evolution of a Transgranular Finger-Like Slit

  • Jay SantokiEmail author
  • Arnab Mukherjee
  • Daniel Schneider
  • Michael Selzer
  • Britta Nestler
TMS2018 Phase Stability in Electronic Materials
  • 75 Downloads
Part of the following topical collections:
  1. TMS2018 Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XVII

Abstract

Electromigration damage due to void propagation in thin films has garnered much attention due to its implications for efficient design of interconnects. Voids can drift along the line, preserving its shape, or evolve into various time-dependent configurations, which are governed by the interplay between the capillarity and electron wind force. We have employed the phase-field method to elucidate the transition of a circular void to a finger-like slit. Following an initial transient regime, the void attains an equilibrium shape with a narrow parallel slit-like body, which contains a circular rear end, and a parabolic tip. The subsequent drift of the void is characterized by shape invariance along with a steady-state slit width and velocity, which scale with the applied electric field as \(E^{-1/2}\) and \(E^{3/2}\), respectively. The results obtained from phase-field simulations are critically compared with the sharp-interface solution. Repercussions of the study, in terms of prediction of void migration in flip-chip Sn-Ag-Cu solder bumps and fabrication of channels with desired micro/nanodimensions, are discussed.

Keywords

Electromigration finger-like slit void propagation phase-field model solder joints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful for financial support from the cooperative graduate school ‘‘Gefuegestrukturanalyse und Prozessbewertung’’ of the Ministry of the State of Baden-Wuerttemberg and the ‘‘Mittelbau’’ Initiative. The authors gratefully acknowledge editorial support from Leon Geisen.

References

  1. 1.
    P.S. Ho and T. Kwok, Rep. Prog. Phys. 52(3), 301 (1989).CrossRefGoogle Scholar
  2. 2.
    I.A. Blech, J. Appl. Phys. 47(4), 1203 (1976).CrossRefGoogle Scholar
  3. 3.
    K.N. Tu, J. Appl. Phys. 94(9), 5451 (2003).CrossRefGoogle Scholar
  4. 4.
    R. De Orio, H. Ceric, and S. Selberherr, Microelectron. Reliab. 50(6), 775 (2010).CrossRefGoogle Scholar
  5. 5.
    S.K. Lin, Y.C. Liu, S.J. Chiu, Y.T. Liu, and H.Y. Lee Sci. Rep. 7(1) 3082 (2017) .CrossRefGoogle Scholar
  6. 6.
    E. Arzt, O. Kraft, W.D. Nix, and J.E. Sanchez Jr., J. Appl. Phys. 76(3), 1563 (1994)CrossRefGoogle Scholar
  7. 7.
    S.P. Riege, J.A. Prybyla, and A.W. Hunt, Appl. Phys. Lett. 69(16), 2367 (1996).CrossRefGoogle Scholar
  8. 8.
    A.W. Hunt, S.P. Riege, and J.A. Prybyla, Appl. Phys. Lett. 70(19), 2541 (1997).CrossRefGoogle Scholar
  9. 9.
    T. Miyazaki and T. Omata, Microelectron. Reliab. 46(9–11), 1898 (2006).CrossRefGoogle Scholar
  10. 10.
    T. Marieb, P. Flinn, J.C. Bravman, D. Gardner, and M. Madden, J. Appl. Phys. 78(2), 1026 (1995).CrossRefGoogle Scholar
  11. 11.
    A.V. Vairagar, S.G. Mhaisalkar, A. Krishnamoorthy, K.N. Tu, A.M. Gusak, M.A. Meyer, and E. Zschech, Appl. Phys. Lett. 85(13), 2502 (2004).CrossRefGoogle Scholar
  12. 12.
    J. Lloyd, Microelectron. Reliab. 47(9–11), 1468 (2007).CrossRefGoogle Scholar
  13. 13.
    M.R. Gungor and D. Maroudas, J. Appl. Phys. 85(4), 2233 (1999).CrossRefGoogle Scholar
  14. 14.
    J. Cho, M.R. Gungor, and D. Maroudas, J. Appl. Phys. 101(2), 023518 (2007).CrossRefGoogle Scholar
  15. 15.
    J. Cho, M.R. Gungor, and D. Maroudas, Appl. Phys. Lett. 88(22), 221905 (2006).CrossRefGoogle Scholar
  16. 16.
    O. Kraft, S. Bader, J. Sanchez, and E. Arzt, Mater. Res. Soc. Symp. Proc. 309, 199 (1993).CrossRefGoogle Scholar
  17. 17.
    S. Shingubara, Y. Nakasaki, and H. Kaneko, Appl. Phys. Lett. 58(1), 42 (1991).CrossRefGoogle Scholar
  18. 18.
    H. Gan, W. Choi, G. Xu, and K. Tu, JOM US 54(6), 34 (2002).CrossRefGoogle Scholar
  19. 19.
    P.S. Ho, J. Appl. Phys. 41(1), 64 (1970).CrossRefGoogle Scholar
  20. 20.
    W. Yang, W. Wang, and Z. Suo, J. Mech. Phys. Solids 42(6), 897 (1994).CrossRefGoogle Scholar
  21. 21.
    Z. Suo, W. Wang, and M. Yang, Appl. Phys. Lett. 64(15), 1944 (1994).CrossRefGoogle Scholar
  22. 22.
    L. Xia, A. Bower, Z. Suo, and C. Shih, J. Mech. Phys. Solids 45(9), 1473 (1997).CrossRefGoogle Scholar
  23. 23.
    M.R. Gungor and D. Maroudas, Appl. Phys. Lett. 72(26), 3452 (1998).CrossRefGoogle Scholar
  24. 24.
    D.N. Bhate, A. Kumar, and A.F. Bower, J. Appl. Phys. 87(4), 1712 (2000).CrossRefGoogle Scholar
  25. 25.
    M. Mahadevan and R.M. Bradley, Phys. Rev. B 59(16), 11037 (1999).CrossRefGoogle Scholar
  26. 26.
    J.W. Barrett, H. Garcke, and R. Nürnberg, Interface Free Bound. 9(2), 171 (2007).CrossRefGoogle Scholar
  27. 27.
    M. Park, S. Gibbons, and R. Arróyave, Acta Mater. 61(19), 7142 (2013).CrossRefGoogle Scholar
  28. 28.
    P. Zhou and W.C. Johnson, J. Electron. Mater. 40(9), 1867 (2011).CrossRefGoogle Scholar
  29. 29.
    V. Attari, S. Ghosh, T. Duong, and R. Arroyave. arXiv preprint arXiv:1803.07227 (2018)
  30. 30.
    A. Mukherjee, K. Ankit, R. Mukherjee, and B. Nestler, J. Electron. Mater. 45(12), 6233 (2016).CrossRefGoogle Scholar
  31. 31.
    S. Chakraborty, P. Kumar, and A. Choudhury, Acta Mater. 153, 377 (2018).CrossRefGoogle Scholar
  32. 32.
    Y.C. Joo and C.V. Thompson, Mater. Res. Soc. Symp. Proc. 309, 351 (1993)Google Scholar
  33. 33.
    J.E. Sanchez, L.T. McKnelly, and J.W. Morris, J. Appl. Phys. 72(7), 3201 (1992).CrossRefGoogle Scholar
  34. 34.
    L. Baňas and R. Nürnberg, Comput. Vis. Sci. 12(7), 319 (2009).CrossRefGoogle Scholar
  35. 35.
    L. Zhang, S. Ou, J. Huang, K.N. Tu, S. Gee, and L. Nguyen, Appl. Phys. Lett. 88(1), 012106 (2006).CrossRefGoogle Scholar
  36. 36.
    I.A. Blech and E.S. Meieran, J. Appl. Phys. 40(2), 485 (1969).CrossRefGoogle Scholar
  37. 37.
    A.T. Huang, A.M. Gusak, K.N. Tu, and Y.S. Lai, Appl. Phys. Lett. 88(14), 141911 (2006).CrossRefGoogle Scholar
  38. 38.
    K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, and K.N. Tu, J. Appl. Phys. 97(2), 024508 (2005).CrossRefGoogle Scholar
  39. 39.
    Y. Yao, Y. Wang, L.M. Keer, and M.E. Fine, Scr. Mater. 95, 7 (2015).CrossRefGoogle Scholar
  40. 40.
    W. Wang, Z. Suo, and T. Hao, J. Appl. Phys. 79(5), 2394 (1996).CrossRefGoogle Scholar
  41. 41.
    J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 28(2), 258 (1958).CrossRefGoogle Scholar
  42. 42.
    N. Provatas and K. Elder, Phase-Field Methods in Material Science and Engineering (Wiley-VCH Verlag, Weinheim, 2010)Google Scholar
  43. 43.
    J. Hötzer, A. Reiter, H. Hierl, P. Steinmetz, M. Selzer, and B. Nestler, J. Comput. Sci. 26, 1 (2018).CrossRefGoogle Scholar
  44. 44.
    A. Vondrous, M. Selzer, J. Hötzer, and B. Nestler, Int. J. High Perform. Comput. Appl. 28(1), 61 (2014).CrossRefGoogle Scholar
  45. 45.
    O. Kraft, U. Möckl, and E. Arzt, Qual. Reliab. Eng. Int. 11(4), 279 (1995).CrossRefGoogle Scholar
  46. 46.
    Y. Wang, Y. Yao, and L.M. Keer, J. Appl. Phys. 121(20), 205111 (2017).CrossRefGoogle Scholar
  47. 47.
    D. Dasgupta and D. Maroudas, Appl. Phys. Lett. 103(18), 181602 (2013).CrossRefGoogle Scholar
  48. 48.
    A. Mukherjee, K. Ankit, M. Selzer, and B. Nestler, Phys. Rev. Appl. 9, 044004 (2018).CrossRefGoogle Scholar
  49. 49.
    T. Zaporozhets, A. Gusak, K. Tu, and S. Mhaisalkar, J. Appl. Phys. 98(10), 103508 (2005).CrossRefGoogle Scholar
  50. 50.
    Z. Choi, R. Mönig, and C. Thompson, J. Mater. Res. 23(2), 383 (2008).CrossRefGoogle Scholar
  51. 51.
    A. Kumar, D. Dasgupta, C. Dimitrakopoulos, and D. Maroudas, Appl. Phys. Lett. 108(19), 193109 (2016).CrossRefGoogle Scholar
  52. 52.
    A. Mukherjee, R. Mukherjee, K. Ankit, A. Bhattacharya, and B. Nestler, Phys. Rev. E 93, 032504 (2016).CrossRefGoogle Scholar
  53. 53.
    A. Mukherjee, K. Ankit, A. Reiter, M. Selzer, and B. Nestler, Phys. Chem. Chem. Phys. 18, 25609 (2016).CrossRefGoogle Scholar
  54. 54.
    D. Du and D. Srolovitz, Appl. Phys. Lett. 85(21), 4917 (2004).CrossRefGoogle Scholar
  55. 55.
    V. Gill, P. Guduru, and B. Sheldon, Int. J. Solids Struct. 45(3), 943 (2008).CrossRefGoogle Scholar
  56. 56.
    M.D. Morariu, N.E. Voicu, E. Schäffer, Z. Lin, T.P. Russell, and U. Steiner, Nat. Mater. 2(1), 48 (2003).CrossRefGoogle Scholar
  57. 57.
    I. Dutta and P. Kumar, Appl. Phys. Lett. 94(18), 184104 (2009).CrossRefGoogle Scholar
  58. 58.
    C. Joshi, T. Abinandanan, R. Mukherjee, and A. Choudhury, Comput. Mater. Sci. 139, 75 (2017).CrossRefGoogle Scholar
  59. 59.
    W.W. Mullins, J. Appl. Phys. 30(1), 77 (1959)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Institute of Digital Materials Science (IDM)Karlsruhe University of Applied SciencesKarlsruheGermany
  2. 2.Institute of Applied Materials-Computational Materials Science (IAM-CMS)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations