Journal of Electronic Materials

, Volume 48, Issue 1, pp 170–181 | Cite as

Study of Interfacial Reactions Between Lead-Free Solders and Cu-xZn Alloys

  • Yee-Wen YenEmail author
  • William Yu
  • Chu-Hsuan Wang
  • Chih-Ming Chen
  • Yu-Chun Li
  • Pei-Yu Chen
  • Guan-Da Chen
TMS2018 Phase Stability in Electronic Materials
Part of the following topical collections:
  1. TMS2018 Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XVII


The solid/liquid reaction couple technique was employed to investigate the interfacial reactions between Cu-xZn (x = 0 wt.%, 5 wt.%, 15 wt.%, 30 wt.%, 40 wt.%) alloys and lead-free solders Sn, Sn-3.0Ag-0.5Cu (SAC, in wt.%), and Sn-9Zn (SZ, in wt.%) alloys at 240°C, 270°C, and 300°C for 0.5 h to 100 h. (Cu,Zn)6Sn5 and (Cu,Zn)3Sn phases were formed in the Sn/Cu-xZn (x = 5 wt.%, 15 wt.%, 30 wt.%) reaction couples, but with increasing reaction temperature and time, (Cu,Sn)Zn phase was formed, replacing (Cu,Zn)3Sn phase. Metastable T phase and (Cu,Sn)Zn phase were formed in the Sn/Cu-40Zn reaction couple at 300°C. (Cu,Zn)6Sn5 and (Cu,Zn)3Sn phases formed in the SAC/Cu-xZn (x = 5 wt.%, 15 wt.%) reaction couples. Furthermore, (Cu,Zn)6Sn5 and (Cu,Zn)Sn phases were observed when the SAC solders reacted with Cu-30Zn and Cu-40Zn alloys. T phase and (Cu,Sn)Zn phase were formed in the SAC/Cu-40Zn reaction couple reacted at 300°C for 100 h. (Cu,Sn)Zn5 and (Cu,Sn)5Zn8 phases were formed in the SZ/Cu-Zn reaction couples at 240°C. However, with increasing reaction time and temperature, only (Cu,Sn)5Zn8 phase was detected. Therefore, it can be concluded that the intermetallic compound (IMC) formation was sensitive to both the reaction temperature and the Zn content in the Cu-Zn alloy.


Solid/liquid reaction couple technique interfacial reaction  Cu-xZn alloys lead-free solders metastable T phase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge financial support from the Ministry of Science and Technology, Taiwan, R.O.C. (Grant No. MOST 104-2628-E-011-001-MY3) and the Ministry of Education (MoE) Top University Projects. The authors are also grateful for help from Mr. S.C. Laiw, who works at National Taiwan University of Science and Technology, for SEM–EDS operation, and Mr. C.Y. Kao, who works at National Taiwan University, for carrying out the EPMA analysis.


  1. 1.
    Official Journal of the European Union, 13.2. 2003; L37/19-L37/23Google Scholar
  2. 2.
    B.J. Lee, N.M. Hwang, and H.M. Lee, Acta Mater. 45, 1867 (1997).CrossRefGoogle Scholar
  3. 3.
    D.Q. Yu, H.P. Xie, and L. Wang, J. Alloys Compd. 385, 119 (2004).CrossRefGoogle Scholar
  4. 4.
    Y.W. Yen and W.K. Liu, J. Mater. Res. 22, 2633 (2007).Google Scholar
  5. 5.
    X. Wei, H. Huanf, L. Zhou, M. Zhang, and X. Liu, Mater. Lett. 61, 655 (2007).CrossRefGoogle Scholar
  6. 6.
    C.C. Jao, Y.W. Yen, and C. Lee, Intermetallics 16, 463 (2008).CrossRefGoogle Scholar
  7. 7.
    L.R. Garcia, W.R. Oso´rio, L.C. Peixoto, and A. Garcia, J. Electron. Mater. 38, 2405 (2009).CrossRefGoogle Scholar
  8. 8.
    W.K. Liou and Y.W. Yen, Intermetallics 17, 72 (2009).CrossRefGoogle Scholar
  9. 9.
    W.X. Chen, S.B. Xue, H. Wang, J.X. Wang, Z.J. Han, and L.L. Gao, J. Mater. Sci. 2, 461 (2010).Google Scholar
  10. 10.
    Y.W. Yen, P.H. Tsai, Y.K. Fang, S.C. Lo, Y.P. Hsieh, and C. Lee, J. Alloys Compd. 503, 25 (2010).CrossRefGoogle Scholar
  11. 11.
    Y.W. Yen, D.W. Liaw, K.D. Chen, and H. Chen, J. Electron. Mater. 29, 2412 (2010).CrossRefGoogle Scholar
  12. 12.
    Y.W. Yen, P.H. Tsai, Y.K. Fang, B.J. Chen, and C. Lee, J. Alloys Compd. 517, 111 (2012).CrossRefGoogle Scholar
  13. 13.
    Y.T. Wang, C.J. Ho, and H.L. Tsai, Nano/Micro Eng. Mol. Sys. 8, 1038 (2013).Google Scholar
  14. 14.
    Y.W. Yen, Y.P. Hsieh, C.C. Jao, C.W. Chiu, and Y.S. Li, J. Electron. Mater. 43, 187 (2014).CrossRefGoogle Scholar
  15. 15.
    C.E. Ho, L.C. Shiau, and C.R. Kao, J. Electron. Mater. 31, 1264 (2002).CrossRefGoogle Scholar
  16. 16.
    C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, J. Electron. Mater. 31, 584 (2002).CrossRefGoogle Scholar
  17. 17.
    F. Zhang, M. Li, C.C. Chum, and Z.C. Shao, J. Electron. Mater. 32, 123 (2003).CrossRefGoogle Scholar
  18. 18.
    K.S. Kim, J.M. Yang, C.H. Yu, I.O. Jung, and H.H. Kim, J. Alloys Compd. 379, 314 (2004).CrossRefGoogle Scholar
  19. 19.
    C.E. Ho, S.C. Yang, and C.R. Kao, J. Mater. Sci.: Mater. Electron. 18, 155 (2006).Google Scholar
  20. 20.
    Y.W. Yen and W.K. Liou, J. Mater. Res. 22, 2663 (2007).CrossRefGoogle Scholar
  21. 21.
    Y.W. Yen, W.T. Chou, H.C. Chen, W.K. Liou, and C. Lee, Int. J. Mater. Res. 99, 1256 (2008).CrossRefGoogle Scholar
  22. 22.
    Y.W. Yen, C.Y. Lee, M.H. Kuo, K.S. Chao, and K.D. Chen, Int. J. Mater. Res. 100, 672 (2009).CrossRefGoogle Scholar
  23. 23.
    S.K. Lin, K.D. Chen, H. Chen, W.K. Liou, and Y.W. Yen, J. Mater. Res. 25, 2278 (2010).CrossRefGoogle Scholar
  24. 24.
    C.F. Tseng, T.K. Lee, G. Ramakrishna, K.C. Liu, and J.G. Duh, Mater. Lett. 65, 3216 (2011).CrossRefGoogle Scholar
  25. 25.
    A. Kumar and Z. Chen, J. Electron. Mater. 40, 213 (2011).CrossRefGoogle Scholar
  26. 26.
    K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, J. Appl. Phys. 97, 024508-1-024508-8 (2005)Google Scholar
  27. 27.
    Y.K. Jee, Y.H. Ko, and J. Yu, J. Mater. Res. 22, 1879 (2007).CrossRefGoogle Scholar
  28. 28.
    A. Rahn, The Basics of Soldering (New York: Wiley, 1993).Google Scholar
  29. 29.
    C.Y. Oh, H. Roh, Y.M. Kim, J.S. Lee, H.Y. Cho, and Y. Kim, J. Mater. Res. 24, 297 (2009).CrossRefGoogle Scholar
  30. 30.
    C.Y. Yu, K.J. Wang, and J.G. Duh, J. Electron. Mater. 39, 230 (2010).CrossRefGoogle Scholar
  31. 31.
    M.G. Cho, S.K. Seo, and H.M. Lee, J. Alloys Compd. 474, 510 (2009).CrossRefGoogle Scholar
  32. 32.
    P. Harris, Solder. Surf. Mount Tech. 11, 46 (1999).CrossRefGoogle Scholar
  33. 33.
    D. Li, O. Franke, S. Fürtauer, D. Cupid, and H. Flandorfer, Intermetallics 34, 148 (2013).CrossRefGoogle Scholar
  34. 34.
    C.Y. Chou and S.W. Chen, Acta Mater. 54, 2393 (2006).CrossRefGoogle Scholar
  35. 35.
    A.P. Miodownik, in Phase Diagrams of Binary Copper Alloys, ed. by P.R. Subramanian, D.J. Chakrabarti, D.E. Laughlin (ASM International, Materials Park, Ohio, 1994), pp. 487–496Google Scholar
  36. 36.
    W.K. Liou and Y.W. Yen, J. Electron. Mater. 18, 2222 (2009).CrossRefGoogle Scholar
  37. 37.
    Y.W. Yen, W.K. Liou, W.C. Chen, and C.W. Chiu, J. Alloys Compd. 574, 490 (2013).CrossRefGoogle Scholar
  38. 38.
    C.Y. Yu and J.G. Duh, J. Mater. Sci. 47, 6467 (2012).CrossRefGoogle Scholar
  39. 39.
    C.C. Chen, S.W. Chen, and C.Y. Kao, J. Electron. Mater. 35, 922 (2006).CrossRefGoogle Scholar
  40. 40.
    C.C. Chen, S.W. Chen, and C.H. Horng, J. Mater. Res. 23, 2743 (2008).CrossRefGoogle Scholar
  41. 41.
    R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (Materials Park, OH: ASM International, 1973), p. 795.Google Scholar
  42. 42.
    T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng., R 49, 1 (2005).CrossRefGoogle Scholar
  43. 43.
    C.M. Chen and C.H. Chen, J. Electron. Mater. 36, 1363 (2007).CrossRefGoogle Scholar
  44. 44.
    S.C. Yang, C.E. Ho, C.W. Chang, and C.R. Kao, Int. J. Mater. Res. 21, 2436 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Yee-Wen Yen
    • 1
    Email author
  • William Yu
    • 1
  • Chu-Hsuan Wang
    • 1
  • Chih-Ming Chen
    • 2
  • Yu-Chun Li
    • 1
  • Pei-Yu Chen
    • 1
  • Guan-Da Chen
    • 1
  1. 1.Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan, ROC
  2. 2.Department of Chemical EngineeringNational Chung Hsing UniversityTaichungTaiwan, ROC

Personalised recommendations