Advertisement

Journal of Electronic Materials

, Volume 47, Issue 11, pp 6567–6574 | Cite as

Effect of the Er3+ Co-dopant on the Green Upconversion Emission of LaSr2AlO5:Yb3+ Phosphors

  • J. Oliva
  • C. R. García
  • L. A. Díaz Torres
  • C. Camacho
  • M. Guzman-Rocha
  • M. T. Romero
  • G. A. Hirata
Article

Abstract

This work presents the structural, morphological and optical properties of LaSr2AlO5:Yb3+,Er3+ phosphors (LSA:Yb,Er) synthesized by a combustion method. The Yb3+ concentration was kept constant at 2 mol.%, while the Er3+ concentration changed from 0.2 mol.% to 6 mol.%. X-ray diffraction measurements revealed that all the LSA:Yb,Er phosphors presented a pure tetragonal phase. Scanning electron microscopy images show that LSA:Yb,Er phosphors increased their size as the Er3+ concentration increases (from 1.95 μm for Er3+ concentrations < 1 mol.% to 2.3 μm for Er3+ content in the range of 1 ≤ x < 6 mol.%,). In addition, the phosphors presented oval-like and quasipherical shapes for Er3+ content ≤ 1 mol.%. When the Er3+ concentrations are > 1 mol.%, the LSA:Yb,Er phosphors present a notorious increase of conglomeration, and the particles had irregular morphologies. According to luminescence measurements, the LSA:Yb,Er phosphors present a green luminescence centered at 549 nm (λexc = 968 nm). The strongest green emission was observed for an Er3+ concentration of 1 mol.%, above this concentration, the green emission intensity decreases due to an excess of OH and carbonate groups on the surface of LSA:Yb,Er phosphors, as confirmed by the FTIR spectra. Moreover, the CIE coordinates for the green emission were tuned with the Er3+ concentration. These results suggest that LSA host could be a good candidate to produce upconversion emission when doped with rare earths, which could be attractive for the development of lighting sources.

Keywords

Upconversion ytterbium erbium green emission lanthanum strontium aluminum oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

C. R. Garcia thanks to PRODEP-SEP 2017 Cuerpos Académicos and FONCYT-COECYT 2016 Projects and Universidad Autónoma de Coahuila (UAdeC) for the partial support to this work. M. Guzman-Rocha thanks CONACYT for the Ph.D. scholarship. Authors also appreciate the technical work performed by R. Valdivia, C. Albor and Martín Olmos from Centro de Investigaciones en óptica León México.

References

  1. 1.
    G. Tosini, I. Ferguson, and K. Tsubota, Mol. Vis. 22, 61 (2016).Google Scholar
  2. 2.
    W.S. Cheung, Y.F. Cheung, H.T. Chen, R.S.Y. Hui, E. Waffenschmidt, and H.W. Choi, Opt. Express 23, 15021 (2015).CrossRefGoogle Scholar
  3. 3.
    G. Ledru, C. Catalano, P. Dupuis, and G. Zissis, AIP Adv. 4, 107134 (2014).CrossRefGoogle Scholar
  4. 4.
    J.D. Bullough, A. Bierman, and M.S. Rea, Int. J. Occup. Saf. Ergon. 2017, 1 (2017).Google Scholar
  5. 5.
    Y.W. Seo, B.K. Moon, B.C. Choi, J.H. Jeong, H. Choi, and J.H. Kim, Ceram. Int. 41, 14332 (2015).CrossRefGoogle Scholar
  6. 6.
    X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, Ceram. Int. 42, 14710 (2016).CrossRefGoogle Scholar
  7. 7.
    V. Singh, M. Seshadri, N. Singh, M.S. Pathak, R. SenthilKumaran, Y.K. Choi, P.K. Singh, S.J. Dhoble, and A.K. Srivastava, J. Lumin. 176, 347 (2016).CrossRefGoogle Scholar
  8. 8.
    T. Grzyb, A. Gruszeczka, and S. Lis, J. Lumin. 175, 21 (2016).CrossRefGoogle Scholar
  9. 9.
    Y. Liu, M. Sun, Y. Liu, G. Chen, and X. Zhang, Opt. Mat. 45, 32 (2015).CrossRefGoogle Scholar
  10. 10.
    W. Lu, L. Cheng, J. Sun, H. Zhong, X. Li, Y. Tian, J. Wan, Y. Zheng, L. Huang, T. Yu, H. Yu, and B. Chen, Physica B 405, 3284 (2010).CrossRefGoogle Scholar
  11. 11.
    W. You, F. Lai, H. Jiang, and J. Liao, Physica B 407, 1094 (2012).CrossRefGoogle Scholar
  12. 12.
    S. Agrawal and V. Dubey, J. Radiat. Res. Appl. Sci. 7, 601 (2014).CrossRefGoogle Scholar
  13. 13.
    J. Oliva, E. De la Rosa, L.A. Diaz-Torres, A. Torres, P. Salas, and O. Meza, J. Lumin. 154, 185 (2014).CrossRefGoogle Scholar
  14. 14.
    Y.P. Fu, S.B. Wen, and C.S. Hsu, J. Alloys Compd. 458, 318 (2008).CrossRefGoogle Scholar
  15. 15.
    M. Raukas, A. Konrad, and K.C. Mishra, J. Lumin. 122–123, 773 (2007).CrossRefGoogle Scholar
  16. 16.
    J. Wook Lee, J.H. Lee, J. Woo, H. Ahn, J.S. Kim, and C.H. Lee, Ind. Eng. Chem. Res. 47, 5994 (2008).CrossRefGoogle Scholar
  17. 17.
    J. Milliez, A. Rapaport, M. Bass, A. Cassanho, and H.P. Jenssen, J. Display Technol. 2, 307 (2006).CrossRefGoogle Scholar
  18. 18.
    J.H. Kim and K.Y. Jung, J. Lumin. 131, 1487 (2011).CrossRefGoogle Scholar
  19. 19.
    H. Terraschke, M. Suta, M. Adlung, S. Mammadova, N. Musayeva, R. Jabbarov, M. Nazarov, and C. Wickleder, J. Spectrosc. 2015, 541958 (2015).CrossRefGoogle Scholar
  20. 20.
    S. Das, C.Y. Yang, and C.H. Lu, J. Am. Ceram. Soc. 96, 1602 (2013).CrossRefGoogle Scholar
  21. 21.
    Z. Yu, Z. Xia, C. Su, R. Wang, and Q. Liu, J. Mater. Chem. C 3, 11629 (2015).CrossRefGoogle Scholar
  22. 22.
    W.B. Im, N.N. Fellows, S.P. DenBaars, R. Seshadri, and Y.I. Kim, Chem. Mater. 21, 2957 (2009).CrossRefGoogle Scholar
  23. 23.
    W. Jiang, R. Fu, X. Gu, P. Zhang, and A. Cosgun, J. Lumin. 157, 46 (2015).CrossRefGoogle Scholar
  24. 24.
    C.E. Rodríguez-García, E.M. Tejeda, F.F. Castillon, and G.A. Hirata, J. Nanosci. Nanotechnol. 11, 1 (2011).CrossRefGoogle Scholar
  25. 25.
    C.E. Rodríguez-García, N. Perea-López, O. Raymond, and G.A. Hirata, Sci. Technol. Adv. Mater. 4, 563 (2012).Google Scholar
  26. 26.
    C.R. Garcia, J. Oliva, and L.A. Diaz-Torres, Photochem. Photobiol. 91, 505 (2015).CrossRefGoogle Scholar
  27. 27.
    D.T. Klier and M.U. Kumke, J. Mater. Chem. C 3, 11228 (2015).CrossRefGoogle Scholar
  28. 28.
    C. Jiang, L. Fang, M. Shen, F. Zheng, and X. Wu, Appl. Phys. Lett. 94, 071110 (2009).CrossRefGoogle Scholar
  29. 29.
    O. Contreras, S. Srinivasan, F.A. Ponce, G.A. Hirata, F. Ramos, and J. Mckittrick, Appl. Phys. Lett. 81, 1993 (2002).CrossRefGoogle Scholar
  30. 30.
    D. Solis, E. De la Rosa, O. Meza, L.A. Diaz-Torres, P. Salas, and C. Angeles-Chavez, J. Appl. Phys. 108, 023103 (2010).CrossRefGoogle Scholar
  31. 31.
    S. Das, A.A. Reddy, and G.V. Prakash, Chem. Phys. Lett. 504, 206 (2011).CrossRefGoogle Scholar
  32. 32.
    T. López-Luke, E. De la Rosa, I. Campos Villalobos, R.A. Rodriguez, C. Ángles-ChÁvez, P. Salas, D.A. Wheeler, and J.Z. Zhang, J. Lumin. 145, 292 (2014).CrossRefGoogle Scholar
  33. 33.
    B.P. Gangwar, V. Palakollu, A. Singh, S. Kanvah, and S. Sharma, RSC Adv. 4, 55407 (2014).CrossRefGoogle Scholar
  34. 34.
    H. Saravani and M. Khajehali, Orient. J. Chem. 31, 2351 (2015).CrossRefGoogle Scholar
  35. 35.
    M. Salavati-Niasari, G. Hosseinzadeh, and F. Davar, J. Alloys Compd. 509, 134 (2011).CrossRefGoogle Scholar
  36. 36.
    Z. Tianmin, Z. Yanqiu, W. Zhongli, and C. Baojiu, J. Rare Earths 33, 686 (2015).CrossRefGoogle Scholar
  37. 37.
    A. Li, D. Xu, Y. Zhang, H. Lin, S. Yang, Z. Chen, and Y. Shao, J. Am. Ceram. Soc. 99, 1657 (2016).CrossRefGoogle Scholar
  38. 38.
    S. Ye, G. Chen, W. Shao, J. Qu, and P.N. Prasad, Nanoscale 7, 3976 (2015).CrossRefGoogle Scholar
  39. 39.
    L.A. Diaz-Torres, O. Meza, D. Solis, P. Salas, and E. De la Rosa, Opt. Lasers Eng. 49, 703 (2011).CrossRefGoogle Scholar
  40. 40.
    T. Grzyb and A. Tyminski, J. Alloys Compd. 660, 235 (2016).CrossRefGoogle Scholar
  41. 41.
    L.A. Gómez, L.S. Menezes, C.B. de Araújo, R.R. Gonçalves, S.J.L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. 107, 113508 (2010).CrossRefGoogle Scholar
  42. 42.
    F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, Sci. Rep. 5, 8233 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • J. Oliva
    • 1
    • 2
  • C. R. García
    • 2
  • L. A. Díaz Torres
    • 3
  • C. Camacho
    • 3
  • M. Guzman-Rocha
    • 3
  • M. T. Romero
    • 2
  • G. A. Hirata
    • 4
  1. 1.CONACYT-Facultad de Ciencias QuimicasUniversidad Autónoma de CoahuilaSaltilloMexico
  2. 2.Facultad de Ciencias Físico MatemáticasUniversidad Autónoma de CoahuilaSaltilloMexico
  3. 3.Centro de Investigaciones en ÓpticaGrupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (GEMANA)LeónMexico
  4. 4.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico

Personalised recommendations