Journal of Electronic Materials

, Volume 47, Issue 11, pp 6583–6590 | Cite as

Dielectric and Optoelectronic Properties of InSe/CdS/CdSe Heterojunctions

  • M. AbuSaa
  • A. F. QasrawiEmail author
  • Sufyan R. Shehada


The effect of an InSe substrate on the structural, optical and dielectric properties of CdS/CdSe heterojunctions prepared by physical vapor deposition technique under vacuum pressure of 10−8 bar are reported. The structural analysis carried out by x-ray diffraction revealed a strained type of growth of the CdS/CdSe heterojunction onto the InSe along the \( a \;{\hbox{and}}\; c \)-axis of the hexagonal lattice. The lattice mismatches and strained nature of the heterojunctions associated with the InSe participation causes a quantum confinement that results in a red shift in the energy band gap, enhanced near infrared (IR) light absorbability, and valence band offsets of 0.62 eV and 0.53 eV for the InSe/CdS and CdS/CdSe interfaces, respectively. In addition, a pronounced enhancement in the real part of the dielectric constant by 2.5 times is observed at 1.25 eV. Furthermore, the Durde–Lorentz modeling of the optical conductivity of the CdS/CdSe and InSe/CdS/CdSe reveals significant increases in the drift mobility values from 43.8 cm2/Vs at the CdS/CdSe interface to 100.0 cm2/Vs upon replacement of glass by an amorphous InSe substrate. The other optical conduction parameters including the free carrier scattering time at the femtosecond level, the plasmon frequency and the free carrier density are also improved accordingly. The photocurrent illumination intensity dependence for the studied system showed that the presence of InSe increases the photocurrent values and changes the recombination mechanism from sublinear at the surface to trap-assisted recombination. The smart feature of the InSe/CdS/CdSe system is that the structurally controlled quantum confinement results in having mobile photocarriers arising from the enhanced absorbability and large dielectric response in the IR region.


CdS/CdSe optical materials coating dielectric properties Drude–Lorentz 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Surana and R.M. Mehra, Nanomater. Appl. 84, 315 (2018).Google Scholar
  2. 2.
    J. Luo, J. Sun, P.C. Guo, Z.S. Yang, Y.X. Wang, and Q.F. Zhang, Mater. Lett. 215, 176 (2018).CrossRefGoogle Scholar
  3. 3.
    D. Esparza, T. Lopez-Luke, J. Oliva, A. Cerdán-Pasarán, A. Martínez-Benítez, I. Mora-Seró, and E. De la Rosa, Electrochim. Acta 247, 899 (2017).CrossRefGoogle Scholar
  4. 4.
    T.Y. Abed, A.F. Qasrawi, and S.E. Al Garni, J. Alloy. Compd. 731, 1022 (2018).CrossRefGoogle Scholar
  5. 5.
    A.F. Qasrawi and S. Rabbaa, Phys. Status Solidi (b) 253, 755 (2016).CrossRefGoogle Scholar
  6. 6.
    A. Biermann, T. Aubert, P. Baumeister, E. Drijvers, Z. Hens, and J. Maultzsch, J. Chem. Phys. 146, 134708 (2017).CrossRefGoogle Scholar
  7. 7.
    R.B. Little, M.A. El-Sayed, G.W. Bryant, and S. Burke, J. Chem. Phys. 114, 1813 (2001).CrossRefGoogle Scholar
  8. 8.
    S.J. Kim and H.B. Im, Thin Solid Films 214, 194 (1992).CrossRefGoogle Scholar
  9. 9.
    I.V. Bodnar, V.Yu. Rud, and Yu.V. Rud, Semiconductors 41, 1307 (2007).CrossRefGoogle Scholar
  10. 10.
    S.E. Al Garni and A.F. Qasrawi, J. Electron. Mater. 46, 4848 (2017).CrossRefGoogle Scholar
  11. 11.
    M.J.I. Khan, M.N. Usmani, Z. Kanwal, and P. Akhtar, Optik 156, 817 (2018).CrossRefGoogle Scholar
  12. 12.
    D. Bastin, E.V. Lavrov, and J. Weber, Phys. Rev. B 85, 195204 (2012).CrossRefGoogle Scholar
  13. 13.
    L. Shi, Q. Zhou, Y. Zhao, Y. Ouyang, Ch Ling, Q. Li, and J. Wang, J. Phy. Chem. Lett. 8, 4368 (2017).CrossRefGoogle Scholar
  14. 14.
    Y. Li, T. Wang, M. Wu, T. Cao, Y. Chen, R. Sankar, and R. Kumar, 2D Mater. 5, 021002 (2018).CrossRefGoogle Scholar
  15. 15.
    Q. Wu, J. Hou, H. Zhao, Z. Liu, X. Yue, S. Peng, and H. Cao, Dalton Trans. 47, 2214 (2018).CrossRefGoogle Scholar
  16. 16.
    T. Umehara, F.A.B.M. Zulkifly, K. Nakada, and A. Yamada, Jpn. J. Appl. Phys. 56, 08MC09 (2017).CrossRefGoogle Scholar
  17. 17.
    O. Madelung, Semiconductors: Data Handbook (New York: Springer, 2012).Google Scholar
  18. 18.
    G.D. Billing, Chem. Phys. 116, 269 (1987).CrossRefGoogle Scholar
  19. 19.
    J. Xiao, M. Long, X. Zhang, J. Ouyang, H. Xu, and Y. Gao, Sci. Rep. 5, 9961 (2015).CrossRefGoogle Scholar
  20. 20.
    R.H. Bube, Photoelectronic Properties of Semiconductors (Cambridge: Cambridge University Press, 1992).Google Scholar
  21. 21.
    L.J.A. Koster, V.D. Mihailetchi, and P.W.M. Blom, Appl. Phys. Lett. 88, 052104 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • M. AbuSaa
    • 1
  • A. F. Qasrawi
    • 1
    • 2
    Email author
  • Sufyan R. Shehada
    • 1
  1. 1.Department of PhysicsArab American UniversityJeninPalestine
  2. 2.Faculty of EngineeringAtilim UniversityAnkaraTurkey

Personalised recommendations