Journal of Electronic Materials

, Volume 47, Issue 11, pp 6494–6506 | Cite as

Energy Transfer and Multicolor Tunable Luminescence Properties of NaGd0.5Tb0.5−xEux(MoO4)2 Phosphors for UV-LED

  • Heng Wang
  • Ting Yang
  • Li Feng
  • Zhanglei NingEmail author
  • Mengjiao Liu
  • Xin Lai
  • Daojiang Gao
  • Jian Bi


Molybdate based phosphors have efficient absorption in the ultraviolet (UV) region and can be used for UV-pumped light emitting. A series of NaGd0.5Tb0.5−xEux(MoO4)2 (0 ≤ x ≤ 0.5) multicolor tunable phosphors were prepared via a conventional solid-state reaction method. The as-prepared samples were well characterized by x-ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electronic microscope, electron energy-dispersive spectroscopy, UV–vis diffused reflectance, photoluminescent spectra, decay curve and temperature-dependent photoluminescence spectra. The results indicate that the NaGd0.5Tb0.5−xEux(MoO4)2 (0 ≤ x ≤ 0.5) phosphors exhibit a good crystallinity and form a continuous solid solution with scheelite structure. Under UV excitation, NaGd0.5Tb0.5−xEux(MoO4)2 (0 ≤ x ≤ 0.5) phosphors exhibit characteristic emissions of Tb3+ (5D4 → 7FJ, J = 6, 5, 4, 3) and Eu3+ (5D0 → 7FJ, J = 0, 1, 2, 3, 4). The host NaGd(MoO4)2 has excellent energy transfer efficiency for rare earth ions, and the energy transfer from Tb3+ ions to Eu3+ ions is efficient, which can be confirmed by the decay curve. The energy transfer (ET) process between Tb3+ and Eu3+ was demonstrated to a reasonable type via a dipole–dipole interaction with ET efficiency of about nearly 95%. Moreover, the temperature-dependent luminescence properties indicated that the phosphors possessed good thermal stability. Interestingly, the luminescence color of NaGd0.5Tb0.5−xEux(MoO4)2 phosphors can be easily tuned from green to green-yellow, yellow, orange-yellow and ultimately to red by simply adjusting the related concentrations of Tb3+ and Eu3+ under a single wavelength excitation, which might have potential applications in the fields of as multi-color display and illumination.


NaGd0.5Tb0.5−xEux(MoO4)2 phosphors solid-state synthesis multicolor tunable luminescence properties energy transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Science Foundation of China (NSFC, No. 51551202), the Scientific Research Fund of Sichuan Provincial Education Department of Sichuan Province (Nos. 15ZA0363, 18ZA0408) and the Applied Basic Research Fund of Science and Technology Department of Sichuan Province (No. 2015JY0274).

Supplementary material

11664_2018_6532_MOESM1_ESM.pdf (537 kb)
Supplementary material 1 (PDF 537 kb)


  1. 1.
    G. Li, C.C. Lin, Y. Wei, Z. Quan, Y. Tian, Y. Zhao, T.S. Chan, and J. Lin, Chem. Commun. 52, 7376 (2016).CrossRefGoogle Scholar
  2. 2.
    C. Wang, Z. Wang, P. Li, J. Cheng, Z. Li, M. Tian, Y. Sun, and Z. Yang, J. Mater. Chem. C 5, 10839 (2017).CrossRefGoogle Scholar
  3. 3.
    J. Ding, H. You, Y. Wang, B. Ma, X. Zhou, X. Ding, Y. Cao, H. Chen, W. Geng, and Y. Wang, J. Mater. Chem. C 6, 3435 (2018).CrossRefGoogle Scholar
  4. 4.
    Y. Wei, C.C. Lin, Z. Quan, M.S. Molokeev, V.V. Atuchin, T.S. Chan, Y. Liang, J. Lin, and G. Li, RSC Adv. 6, 57261 (2016).CrossRefGoogle Scholar
  5. 5.
    Z. Li, Z. Wang, P. Li, J. Cheng, M. Tian, C. Wang, and Z. Yang, Dalton Trans. 46, 14310 (2017).CrossRefGoogle Scholar
  6. 6.
    H.L. Li, G.X. Liu, J.X. Wang, X.T. Dong, and W.S. Yu, J. Lumin. 186, 6 (2017).CrossRefGoogle Scholar
  7. 7.
    D.M. Wang, J. Fan, M.M. Shang, K. Li, Y. Zhang, H.Z. Lian, and J. Lin, Opt. Mater. 51, 162 (2016).CrossRefGoogle Scholar
  8. 8.
    J.Y. Park, K.S. Shim, and H.K. Yang, Ceram. Int. 42, 5737 (2016).CrossRefGoogle Scholar
  9. 9.
    C. Litterscheid, S. Krüger, M. Euler, A. Dreizler, C. Wickleder, and B. Albert, J. Mater. Chem. C 4, 596 (2016).CrossRefGoogle Scholar
  10. 10.
    H.Q. Zuo, Y. Liu, J.Y. Li, X.L. Shi, S.Y. Ma, and M.Z. Zhao, Ceram. Int. 41, 14834 (2015).CrossRefGoogle Scholar
  11. 11.
    Q.F. Wang, Y. Liu, Y. Wang, W.X. Wang, Y. Wan, G.G. Wang, and Z.G. Lu, J. Alloys Compd. 625, 355 (2015).CrossRefGoogle Scholar
  12. 12.
    L.Z. Kong, X.Z. Xiao, J. Yu, D.S. Mao, and G.Z. Lu, J. Mater. Sci. 52, 6310 (2017).CrossRefGoogle Scholar
  13. 13.
    L.L. Li, J.J. Zhang, W.W. Zi, S.C. Gan, G.J. Ji, H.F. Zou, and X.C. Xu, Solid State Sci. 29, 58 (2014).CrossRefGoogle Scholar
  14. 14.
    G.Q. Chen, F.L. Wang, W.C. Ji, Y.X. Liu, and X. Zhang, Superlattices Microstruct. 90, 30 (2016).CrossRefGoogle Scholar
  15. 15.
    G. Jia, J.Y. Liu, X.Y. Qin, M.T. Zhang, L. Chen, Y. Sun, L. Gao, and C.M. Zhang, Mater. Lett. 165, 160 (2016).CrossRefGoogle Scholar
  16. 16.
    K.W. Meert, J.J. Joos, D. Poelman, and P.F. Smet, J. Lumin. 173, 263 (2016).CrossRefGoogle Scholar
  17. 17.
    R.S. De Oliveira, B.S. De Brito, J. Kulesza, S. Alves-Jr, and B.S. Barros, Ceram. Int. 43, 8276 (2017).CrossRefGoogle Scholar
  18. 18.
    A. Rauf, M.S.A.S. Shah, G.H. Choi, U.B. Humayoun, D.H. Yoon, J.W. Bae, J. Park, W. Kim, and P.J. Yoo, ACS Sustain. Chem. Eng. 3, 2847 (2015).CrossRefGoogle Scholar
  19. 19.
    M. Leblanc, V. Maisonneuve, and A. Tressaud, Chem. Rev. 115, 1191 (2015).CrossRefGoogle Scholar
  20. 20.
    P. Burmann, B. Zornoza, C. Téllez, and J. Coronas, Chem. Eng. Sci. 107, 66 (2014).CrossRefGoogle Scholar
  21. 21.
    J. Hanuza, M. Ptak, M. Mączka, K. Hermanowicz, J. Lorenc, and A.A. Kaminskii, J. Solid State Chem. 191, 90 (2012).CrossRefGoogle Scholar
  22. 22.
    A. Durairajan, J.S. Kumar, D. Thangaraju, M.A. Valente, and S. Moorthy, Babu. Superlattices Microstruct. 93, 308 (2016).CrossRefGoogle Scholar
  23. 23.
    B. Devakumar, P. Halappa, and C. Shivakumara, Dyes Pigm. 137, 244 (2017).CrossRefGoogle Scholar
  24. 24.
    P. Shi, Z. Xia, M.S. Molokeev, and V.V. Atuchin, Dalton Trans. 43, 9669 (2014).CrossRefGoogle Scholar
  25. 25.
    J.S. Liao, D. Zhou, H.Y. You, H.R. Wen, Q.H. Zhou, and B. Yang, Optik 124, 1362 (2013).CrossRefGoogle Scholar
  26. 26.
    W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics (New York: Wiley, 1976).Google Scholar
  27. 27.
    T. Li, P. Li, Z. Wang, S. Xu, Q. Bai, and Z. Yang, Inorg. Chem. 55, 8758 (2016).CrossRefGoogle Scholar
  28. 28.
    Y.P. Wei, C.Y. Tu, H.Y. Wang, F.G. Yang, G.H. Jia, Z.Y. You, X.A. Lu, J.F. Li, Z.J. Zhu, and Y. Wang, J. Alloys Compd. 438, 310 (2007).CrossRefGoogle Scholar
  29. 29.
    R.F. Gonçalves, L.S. Cavalcante, I.C. Nogueira, E. Longo, M.J. Godinho, J.C. Sczancoski, V.R. Mastelaro, I.M. Pinatti, I.L.V. Rosa, and A.P.A. Marques, CrystEngComm 17, 1654 (2015).CrossRefGoogle Scholar
  30. 30.
    J.C. Sczancoski, W. Avansi, M.G.S. Costa, M.S. Li, V.R. Mastelaro, R.S. Santos, E. Longo, and L.S. Cavalcante, J. Mater. Sci. 50, 8089 (2015).CrossRefGoogle Scholar
  31. 31.
    B. Devakumar, P. Halappa, and C. Shivakumara, Dyes Pigm. 137, 244 (2017).CrossRefGoogle Scholar
  32. 32.
    H.Q. Zuo, Y. Liu, J.Y. Li, X.L. Shi, S.Y. Ma, and M.Z. Zhao, Ceram. Int. 41, 14834 (2015).CrossRefGoogle Scholar
  33. 33.
    F. Lei, L.J. Huang, Y. Shi, J.J. Xie, L. Zhang, and W.Q. Xiao, J. Mater. Res. 32, 1548 (2017).CrossRefGoogle Scholar
  34. 34.
    Z.L. Ning, W.J. Li, Z.D. Chang, D.J. Gao, and J. Bi, Mater. Res. Bull. 83, 302 (2016).CrossRefGoogle Scholar
  35. 35.
    W. Chao, T. Zhou, J. Jing, H. Geng, Z. Ning, X. Lai, J. Bi, and D. Gao, ACS Appl. Mater. Interfaces 9, 31 (2017).Google Scholar
  36. 36.
    L.H. He, L.N. Bi, X. He, C.G. Xu, Y.F. Liu, and D.M. Lin, J. Lumin. 198, 84 (2018).CrossRefGoogle Scholar
  37. 37.
    D. Qin and W.J. Tang, Ceram. Int. 42, 1538 (2016).CrossRefGoogle Scholar
  38. 38.
    Y. Tian, B. Chen, B. Tian, N. Yu, J. Sun, X. Li, J. Zhang, L. Cheng, H. Zhong, Q. Meng, and R. Hua, J. Colloid Interface Sci. 393, 44 (2013).CrossRefGoogle Scholar
  39. 39.
    L.G. Van Uitert, E.F. Dearborn, and H.M. Marcos, Appl. Phys. Lett. 9, 255 (1966).CrossRefGoogle Scholar
  40. 40.
    Y. Tian, B.J. Chen, B.N. Tian, N.S. Yu, J.S. Sun, X.P. Li, J.S. Zhang, L.H. Cheng, H.Y. Zhong, Q.Y. Meng, and R.N. Hua, J. Colloid Interface Sci. 393, 44 (2013).CrossRefGoogle Scholar
  41. 41.
    D.L. Dexter, J. Chem. Phys. 21, 836 (1953).CrossRefGoogle Scholar
  42. 42.
    J. Zhang, R. Li, L. Liu, L. Li, L. Zou, S. Gan, and G. Ji, Ultrason. Sonochem. 21, 1736 (2014).CrossRefGoogle Scholar
  43. 43.
    B. Wu, W. Yang, H. Liu, L. Huang, B. Zhao, C. Wang, G. Xu, and Y. Lin, Spectrochim. Acta Part A 123, 12 (2014).CrossRefGoogle Scholar
  44. 44.
    M. Guzik, E. Tomaszewicz, Y. Guyot, J. Legendziewicz, and G. Boulon, J. Mater. Chem. C. 3, 8582 (2015).CrossRefGoogle Scholar
  45. 45.
    X. Li, P. Li, Z. Wang, S. Liu, Q. Bao, X. Meng, K. Qiu, Y. Li, Z. Li, and Z. Yang, Chem. Mater. 29, 8792 (2017).CrossRefGoogle Scholar
  46. 46.
    D. Qin and W.J. Tang, Ceram. Int. 42, 1538 (2016).CrossRefGoogle Scholar
  47. 47.
    X.G. Li, Y.L. Li, J.F. Shen, and M.X. Ye, Ceram. Int. 42, 3154 (2016).CrossRefGoogle Scholar
  48. 48.
    L.F. Shen, X. Liu, B.J. Chen, E.Y.B. Pun, and H. Lin, J. Phys. D Appl. Phys. 45, 115301 (2012).CrossRefGoogle Scholar
  49. 49.
    X.G. Zhang, L.Y. Zhou, Q. Pang, J.X. Shi, and M.L.J. Gong, J. Phys. Chem. C 118, 7591 (2014).CrossRefGoogle Scholar
  50. 50.
    C. Zeng, Y.M. Hu, Z.G. Xia, and H.W. Huang, RSC Adv. 5, 68099 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.College of Chemistry and Materials ScienceSichuan Normal UniversityChengduChina

Personalised recommendations