Preparation of a Non-Polar ZnO Film on a Single-Crystal NdGaO3 Substrate by the RF Sputtering Method

  • Y. Kashiwaba
  • Y. Tanaka
  • M. Sakuma
  • T. Abe
  • Y. Imai
  • K. Kawasaki
  • A. Nakagawa
  • I. Niikura
  • Y. Kashiwaba
  • H. Osada
Topical Collection: 18th International Conference on II-VI Compounds
  • 2 Downloads
Part of the following topical collections:
  1. 18th International Conference on II-VI Compounds and Related Materials

Abstract

Preparation of non-polar ZnO (\( 11\overline{2} 0 \)) films on single-crystal NdGaO3 (NGO) (001) substrates was successfully achieved by the radio frequency (RF) sputtering method. Orientation, deposition rate, and surface roughness of ZnO films strongly depend on the working pressure. Characteristics of ZnO films deposited on single-crystal NGO (001) substrates were compared with those of ZnO films deposited on single-crystal sapphire (\( 01\overline{1} 2 \)) substrates. An x-ray diffraction peak of the ZnO (\( 11\overline{2} 0 \)) plane was observed on ZnO films deposited on single-crystal NGO (001) substrates under working pressure of less than 0.5 Pa. On the other hand, uniaxially oriented ZnO (\( 11\overline{2} 0 \)) films on single-crystal sapphire (\( 01\overline{1} 2 \)) substrates were observed under working pressure of 0.1 Pa. The mechanism by which the diffraction angle of the ZnO (\( 11\overline{2} 0 \)) plane on single-crystal NGO (001) substrates was shifted is discussed on the basis of anisotropic stress of lattice mismatch. The deposition rate of ZnO films decreased with an increase in working pressure, and the deposition rate on single-crystal NGO (001) substrates was larger than that on single-crystal sapphire (\( 01\overline{1} 2 \)) substrates. Root mean square (RMS) roughness of ZnO films increased with an increase in working pressure, and RMS roughness of ZnO films on single-crystal NGO (001) substrates was smaller than that of ZnO films on single-crystal sapphire (\( 01\overline{1} 2 \)) substrates even though the film thickness on single-crystal NGO (001) substrates was greater than that on sapphire substrates. It is thought that a single-crystal NGO (001) substrate is useful for deposition of non-polar ZnO (\( 11\overline{2} 0 \)) films.

Keywords

ZnO non-polar sputtering NdGaO3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kato, M. Sano, K. Miyamoto, and T. Yao, J. Cryst. Growth 265, 375 (2004).CrossRefGoogle Scholar
  2. 2.
    Y. Chen, D.M. Bagnall, Z. Zhu, T. Sekiguchi, K. Park, K. Hiraga, T. Yao, S. Koyama, M.Y. Shen, and T. Goto, J. Cryst. Growth 181, 165 (1997).CrossRefGoogle Scholar
  3. 3.
    K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, and H. Takasu, Phys. Stat. Sol. A 180, 287 (2000).CrossRefGoogle Scholar
  4. 4.
    K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, T. Tanabe, and H. Takasu, J. Cryst. Growth 214–215, 50 (2000).CrossRefGoogle Scholar
  5. 5.
    V. Craciun, J. Elders, J.G.E. Gardeniers, J. Geretovsky, and W. Ian, Boyd, Thin Solid Films 259, 1 (1995).CrossRefGoogle Scholar
  6. 6.
    A. Ohtomo, K. Tamura, K. Saikusa, K. Takahashi, T. Makino, Y. Segawa, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 2635 (1999).CrossRefGoogle Scholar
  7. 7.
    H. Kato, M. Sano, K. Miyamoto, and T. Yao, Jpn. J. Appl. Phys. 42(Part 2, 8B), L1002 (2003).Google Scholar
  8. 8.
    H. Xe, K. Ohtani, M. Yamao, and H. Ohno, Appl. Phys. Lett. 89, 071918 (2006).CrossRefGoogle Scholar
  9. 9.
    T. Minami, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 23(Part 2, No. 5), L280 (1984).Google Scholar
  10. 10.
    M.W. Allen, M.M. Alkaisi, and S.M. Durbin, Appl. Phys. Lett. 89, 103520 (2006).CrossRefGoogle Scholar
  11. 11.
    A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 42 (2005).CrossRefGoogle Scholar
  12. 12.
    S. Sasa, M. Ozaki, K. Koike, M. Yano, and M. Inoue, Appl. Phys. Lett. 89, 053502 (2006).CrossRefGoogle Scholar
  13. 13.
    T. Makino, A. Ohtomo, C.H. Chia, Y. Segawa, H. Koinuma, and M. Kawasaki, Physica E 21, 671 (2004).CrossRefGoogle Scholar
  14. 14.
    C.R. Gorla, N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, M. Wraback, and H. Shen, J. Appl. Phys. 85, 2595 (1999).CrossRefGoogle Scholar
  15. 15.
    J.-S. Tian, M.-H. Liang, Y.-T. Ho, Y.-A. Liu, and L. Chang, J. Cryst. Growth 310, 777 (2008).CrossRefGoogle Scholar
  16. 16.
    Y.-C. Liang, J. Alloy. Compd. 508, 158 (2010).CrossRefGoogle Scholar
  17. 17.
    Y.W. Zhang, X.M. Li, W.D. Yu, C. Yang, X. Cao, X.D. Gao, J.F. Kong, W.Z. Shen, J.L. Zhao, and X.W. Sun, J. Phys. D 42, 075410 (2009).CrossRefGoogle Scholar
  18. 18.
    Y. Kashiwaba, H. Kato, T. Kikuchi, I. Niikura, K. Matsushita, and Y. Kashiwaba, Appl. Surf. Sci. 244, 373 (2005).CrossRefGoogle Scholar
  19. 19.
    Y. Kashiwaba, T. Yokoyama, M. Sakuma, T. Abe, A. Nakagawa, I. Niikura, Y. Kashiwaba, M. Daibo, and H. Osada, Phys. Stat. Sol. C 11, 1361 (2014).Google Scholar
  20. 20.
    B.D. Culity, Elements of X-Ray Diffraction, 2nd edn. Chap. 1–7 (Addison-Wesley Pub. Co. Inc., Reading, MA, 1978).Google Scholar
  21. 21.
    H.-G. Chen and S.-P. Hung, J. Alloys Compd. 586, S339 (2014).Google Scholar
  22. 22.
    D.-K. Hwang, K.-P. Kim, and D.-H. Kim, Thin Solid Films 546, 18 (2013).CrossRefGoogle Scholar
  23. 23.
    Z. Fu, B. Lin, G. Liao, and Z. Wu, J. Cryst. Growth 193, 316 (1998).CrossRefGoogle Scholar
  24. 24.
    K.-H. Bang, D.-K. Hwang, and J.-M. Myoung, Appl. Surf. Sci. 207, 359 (2003).CrossRefGoogle Scholar
  25. 25.
    Y.-S. Jung, O. Kononenko, J.-S. Kim, and W.-K. Choi, J. Cryst. Growth 274, 418 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.National Institute of Technology, Sendai CollegeSendaiJapan
  2. 2.Iwate UniversityMoriokaJapan

Personalised recommendations