Optimal Design of an Automotive Exhaust Thermoelectric Generator

Article
  • 2 Downloads

Abstract

The consumption of energy continues to increase at an exponential rate, especially in terms of conventional automobiles. Approximately 40% of the applied fuel into a vehicle is lost as waste exhausted to the environment. The desire for improved fuel efficiency by recovering the exhaust waste heat in automobiles has become an important subject. A thermoelectric generator (TEG) has the potential to convert exhaust waste heat into electricity as long as it is improving fuel economy. The remarkable amount of research being conducted on TEGs indicates that this technology will have a bright future in terms of power generation. The current study discusses the optimal design of the automotive exhaust TEG. An experimental study has been conducted to verify the model that used the ideal (standard) equations along with effective material properties. The model is reasonably verified by experimental work, mainly due to the utilization of the effective material properties. Hence, the thermoelectric module that was used in the experiment was optimized by using a developed optimal design theory (dimensionless analysis technique).

Keywords

Thermoelectric generator automotive exhaust thermoelectric generator effective material properties 

List of Symbols

W

Power output (W)

k

Thermoelement thermal conductivity (W/m K), \( k = k_{p} + k_{n} \)

K

Thermal conductance (W/K), \( K = kA_{e} /L_{e} \)

\( L_{e} \)

Length of thermoelement (mm)

\( \dot{m}_{1} \)

Mass flow rate of hot side (g/s)

\( \dot{m}_{2} \)

Mass flow rate of cold side (g/s)

n

Number of thermocouples

\( N_{m1} \)

Dimensionless capacitance at fluid 1

\( N_{m2} \)

Dimensionless capacitance at fluid 2

\( N_{k} \)

Dimensionless thermal conductance

\( N_{h} \)

Dimensionless convection

\( N_{I} \)

Dimensionless current

\( \dot{Q}_{2} \)

Cooling capacity (W)

\( \dot{Q}_{1} \)

Heat rejection (W)

\( T_{2} \)

Cold junction temperature (°C)

\( T_{1} \)

Hot junction temperature (°C)

\( T_{\infty 2} \)

Cold fluid temperature (°C)

\( T_{{\infty - 1 - {\rm{in}}}} \)

Input hot fluid temperature (°C)

\( T_{{\infty - 1 - {\rm{out}}}} \)

Out hot fluid temperature (°C)

\( T_{{\infty - 2 - {\rm{in}}}} \)

Input cold fluid temperature (°C)

\( {\hbox{T}}_{{\infty - - {\rm{out}}}} \)

Out cold fluid temperature (°C)

\( Z \)

The figure of merit (1/K) \( = \alpha^{2} /\rho {\hbox{k}} \)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Chuang and K.T. Chau, Energy Convers. Manag. 50, 1506 (2003).Google Scholar
  2. 2.
    D. Crane and G. Jackson, Energy Convers. Manag. 45, 1565 (2003).CrossRefGoogle Scholar
  3. 3.
    C. Yu and K.T. Chau, Energy Convers. Manag. 50, 1506 (2009).CrossRefGoogle Scholar
  4. 4.
    J. Yang, in 24th International Conference on Thermoelectrics (2005)Google Scholar
  5. 5.
    D.T. Morelli, in 15th International Conference on Thermoelectrics (1996)Google Scholar
  6. 6.
    G. Rogl, A. Grytsiv, E. Bauer, P. Rogl, and M. Zehetbauer, Intermetallics 18, 57 (2009).CrossRefGoogle Scholar
  7. 7.
    E.H. Erikson, Society of Automotive, (New York, USA, 1963)Google Scholar
  8. 8.
    B.L. Embary and J.R. Tudor, in Intersociety Energy Conversion Engineering Conference (1968)Google Scholar
  9. 9.
    U. Birkholz, E. Grob, U. Stohrer, K. Voss, D.O. Gruden, and W. Wurster, in 7th International Conference on Thermoelectric Energy Conversion (1988)Google Scholar
  10. 10.
    J. Bass, R.J. Campana, and N.B. Elsner, in Technology Development Contractors Coordination Meeting (1992)Google Scholar
  11. 11.
    J.C. Bass, N.B. Elsner, and F.A. Leavitt, in AIP Conference (1994)Google Scholar
  12. 12.
    K. Ikoma, M. Munekiyo, K. Furuya, M. Kobayashi, T. Izumi, and K. Shinohara, in XVII International Conference on Thermoelectrics (1998)Google Scholar
  13. 13.
    K. Matsubara, in 21st International Conference on Thermoelectronics, Yamaguchi, Japan (2002)Google Scholar
  14. 14.
    E.F. Thacher, B.T. Helenbrook, M.A. Karri, and C.J. Richter, in Proceedings of the Institution of Mechanical Engineers (2006)Google Scholar
  15. 15.
    J. Yu and H. Zhao, J. Power Sources 172, 428 (2007).CrossRefGoogle Scholar
  16. 16.
    H. Xiao, X. Gou, and C. Yang, in 7th International Conference on System Simulation and Scientific Computing (2008)Google Scholar
  17. 17.
    F. Meng, L. Chen, and F. Sun, Energy 36, 3513 (2011).CrossRefGoogle Scholar
  18. 18.
    N. Espinosa, M. Lazard, L. Aixala, and H. Scherrer, J. Electron. Mater. 39, 1446 (2010).CrossRefGoogle Scholar
  19. 19.
    Y.Y. Hsiao, Energy 35, 1447 (2010).CrossRefGoogle Scholar
  20. 20.
    M.A. Karri, E.F. Thacher, and B.T. Helenbrook, Energy Convers. Manag. 52, 1596 (2011).CrossRefGoogle Scholar
  21. 21.
    A. Eder, J. Liebi, and D. Jnsch, in Thermoelektrik Eine Chance f r die Automobilindustrie (2009)Google Scholar
  22. 22.
    S. Kim, S. Park, S. Kim, and S.-H. Rhi, J. Electron. Mater. 40, 812 (2011).CrossRefGoogle Scholar
  23. 23.
    D.T. Crane, J.W. LaGrandeur, F. Harris, and L.E. Bell, J. Electron. Mater. 38, 2142 (2011).Google Scholar
  24. 24.
    D.T. Crane, J.W. LaGrandeur, and L.E. Bell, J. Electron. Mater. 38, 2142 (2010).CrossRefGoogle Scholar
  25. 25.
    J. Yang, in Thermoelectrics Applications Workshop, (2009)Google Scholar
  26. 26.
    J.E.A. Salvador, J. Electron. Mater. 42, 1389 (2013).CrossRefGoogle Scholar
  27. 27.
    G.P. Meisner, in Directions in Engine-Efficiency and Emissions Research (DEER) (2011)Google Scholar
  28. 28.
    G. P. Meisner, in Thermoelectrics Applications Workshop (2011)Google Scholar
  29. 29.
    S. Kumar, S.D. Heister, X. Xu, J.R. Salvador, and G.P. Meisner, J. Electron. Mater. 42, 665 (2013)Google Scholar
  30. 30.
    S. Kumar, S.D. Heister, X. Xu, J.R. Salvador, and G.P. Meisner, J. Electron. Mater. 42, 944 (2013)Google Scholar
  31. 31.
    X. Liu, Y.D. Deng, Z. Li, and C.Q. Su, Energy Convers. Manag., 90, (2014)Google Scholar
  32. 32.
    Y. Zhang et al., Energy Convers. Manag. 105, 946 (2015).CrossRefGoogle Scholar
  33. 33.
    T.Y. Kim, A.A. Negash, and G. Cho, Energy Conver. Manag. 124, 280 (2016).CrossRefGoogle Scholar
  34. 34.
    H. Lee, Appl. Energy 106, 79 (2013).CrossRefGoogle Scholar
  35. 35.
    H.S. Lee, Thermoelectrics: Design and Materials (Chichester: Wiley, 2017).Google Scholar
  36. 36.
    A. Elarusi, H.M. Fagehi, A. Attar, and H.S. Lee, J. Electron. Mater. 46, 872 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringWestern Michigan UniversityKalamazooUSA
  2. 2.Department of Mechanical EngineeringJazan UniversityJazanSaudi Arabia
  3. 3.Department of Mechanical EngineeringKing Abdulaziz UniversityRabighSaudi Arabia

Personalised recommendations