A Phase Separation Route to Synthesize α-Fe2O3 Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing

Article
  • 5 Downloads

Abstract

A facile and economic procedure was provided to synthesize α-Fe2O3 nanofibers. In this procedure, porous α-Fe2O3 nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-Fe2O3 nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-Fe2O3 nanofibers was evaluated and compared with solid α-Fe2O3 nanofibers. Results from gas-sensing measurements reveal that porous α-Fe2O3 nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-Fe2O3 nanofibers. Over all, the gas sensor based on porous α-Fe2O3 nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor.

Keywords

α-Fe2O3 nanofibers porous phase separation ethanol sensing ultrafast response/recovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Zhou, S. Lee, Z.C. Xu, and J. Yoon, Chem. Rev. 115, 7944 (2015).CrossRefGoogle Scholar
  2. 2.
    J. Zhang, X.H. Liu, G. Neri, and N. Pinna, Adv. Mater. 28, 795 (2016).CrossRefGoogle Scholar
  3. 3.
    S.W. Lee, W. Lee, Y. Hong, G. Lee, and D.S. Yoon, Sens. Actuator B-Chem. 255, 1788 (2018).CrossRefGoogle Scholar
  4. 4.
    C.T. Liu, F. Wang, T. Xiao, B. Chi, Y.H. Wu, D.R. Zhu, and X.Q. Chen, Sens. Actuator B-Chem. 256, 55 (2018).CrossRefGoogle Scholar
  5. 5.
    P.T. Moseley, Meas. Sci. Technol. 28, 15 (2017).CrossRefGoogle Scholar
  6. 6.
    M. Hakimi, A. Salehi, F.A. Boroumand, and N. Mosleh, IEEE Sens. J. 18, 2245 (2018).CrossRefGoogle Scholar
  7. 7.
    Y.S. Rim, H.J. Chen, B.W. Zhu, S.H. Bae, S.L. Zhu, P.J. Li, I.C. Wang, and Y. Yang, Adv. Mater. Interfaces 4, 22 (2017).CrossRefGoogle Scholar
  8. 8.
    D.R. Miller, S.A. Akbar, and P.A. Morris, Sens. Actuator B-Chem. 204, 250 (2014).CrossRefGoogle Scholar
  9. 9.
    G. Sun, H.L. Chen, Y.W. Li, G.Z. Ma, S.S. Zhang, T.K. Jia, J.L. Cao, X.D. Wang, H. Bala, and Z.Y. Zhang, Mater. Lett. 178, 213 (2016).CrossRefGoogle Scholar
  10. 10.
    X. Wang, P.R. Ren, H.L. Tian, H.Q. Fan, C.L. Cai, and W.G. Liu, J. Alloy. Compd. 669, 29 (2016).CrossRefGoogle Scholar
  11. 11.
    N. Ozer and F. Tepehan, Sol. Energy Mater. Sol. Cells 56, 141 (1999).CrossRefGoogle Scholar
  12. 12.
    D.K. Bandgar, S.T. Navale, Y.H. Navale, S.M. Ingole, F.J. Stadler, N. Ramgir, D.K. Aswal, S.K. Gupta, R.S. Mane, and V.B. Patil, Mater. Chem. Phys. 189, 191 (2017).CrossRefGoogle Scholar
  13. 13.
    N.D. Cuong, D.Q. Khieu, T.T. Hoa, D.T. Quang, P.H. Viet, T.D. Lam, N.D. Hoa, and N.V. Hieu, Mater. Res. Bull. 68, 302 (2015).CrossRefGoogle Scholar
  14. 14.
    Y.W. Huang, W.M. Chen, S.C. Zhang, Z. Kuang, D.Y. Ao, N.R. Alkurd, W.L. Zhou, W. Liu, W.Z. Shen, and Z.J. Li, Appl. Surf. Sci. 351, 1025 (2015).CrossRefGoogle Scholar
  15. 15.
    S.T. Navale, G.D. Khuspe, M.A. Chougule, and V.B. Patil, Ceram. Int. 40, 8013 (2014).CrossRefGoogle Scholar
  16. 16.
    B. Zhang, J. Liu, X.B.A. Cui, Y.L. Wang, Y. Gao, P. Sun, F.M. Liu, K. Shimanoe, N. Yamazoe, and G.Y. Lu, Sens. Actuator B-Chem. 241, 904 (2017).CrossRefGoogle Scholar
  17. 17.
    S. Zolghadr, K. Khojier, and S. Kimiagar, Mater. Sci. Semicond. Process. 54, 6 (2016).CrossRefGoogle Scholar
  18. 18.
    A. Arena, N. Donato, G. Saitta, A. Bonavita, G. Rizzo, and G. Neri, Sens. Actuator B-Chem. 145, 488 (2010).CrossRefGoogle Scholar
  19. 19.
    R. Pandeeswari, R.K. Karn, and B.G. Jeyaprakash, Sens. Actuator B-Chem. 194, 470 (2014).CrossRefGoogle Scholar
  20. 20.
    J.F. Tan, J.H. Chen, K. Liu, and X.T. Huang, Sens. Actuator B-Chem. 230, 46 (2016).CrossRefGoogle Scholar
  21. 21.
    N. D. Hoa, N. V. Duy, S. A. El-Safty and N. V. Hieu, J. Nanomater. 14 (2015).Google Scholar
  22. 22.
    T. Wagner, S. Haffer, C. Weinberger, D. Klaus, and M. Tiemann, Chem. Soc. Rev. 42, 4036 (2013).CrossRefGoogle Scholar
  23. 23.
    D.J. Wales, J. Grand, V.P. Ting, R.D. Burke, K.J. Edler, C.R. Bowen, S. Mintova, and A.D. Burrows, Chem. Soc. Rev. 44, 4290 (2015).CrossRefGoogle Scholar
  24. 24.
    B. Sun, J. Horvat, H.S. Kim, W.S. Kim, J. Ahn, and G.X. Wang, J. Phys. Chem. C 114, 18753 (2010).CrossRefGoogle Scholar
  25. 25.
    J.M. Ma, J. Teo, L. Mei, Z.Y. Zhong, Q.H. Li, T.H. Wang, X.C. Duan, J.B. Lian, and W.J. Zheng, J. Mater. Chem. 22, 11694 (2012).CrossRefGoogle Scholar
  26. 26.
    S.G. Leonardi, A. Mirzaei, A. Bonavita, S. Santangelo, P. Frontera, F. Panto, P.L. Antonucci, and G. Neri, Nanotechnology 27, 10 (2016).CrossRefGoogle Scholar
  27. 27.
    T.M. Li, W. Zeng, and Z.C. Wang, Sens. Actuator B-Chem. 221, 1570 (2015).CrossRefGoogle Scholar
  28. 28.
    M. Joulazadeh and A.H. Navarchian, Synth. Met. 210, 404 (2015).CrossRefGoogle Scholar
  29. 29.
    R.S. Devan, R.A. Patil, J.H. Lin, and Y.R. Ma, Adv. Funct. Mater. 22, 3326 (2012).CrossRefGoogle Scholar
  30. 30.
    Y.J. Xia, J.L. Song, D.N. Yuan, X.N. Guo, and X. Guo, Ceram. Int. 41, 533 (2015).CrossRefGoogle Scholar
  31. 31.
    H.R. Shan, X.Q. Wang, F.H. Shi, J.H. Yan, J.Y. Yu, and B. Ding, A.C.S. Appl. Mater. Interfaces 9, 18966 (2017).CrossRefGoogle Scholar
  32. 32.
    Y. Wu, Y. Jiang, J. Shi, L. Gu, and Y. Yu, Small 13, 8 (2017).Google Scholar
  33. 33.
    S. Yan and Q.S. Wu, J. Mater. Chem. A 3, 5982 (2015).CrossRefGoogle Scholar
  34. 34.
    T.L. Yang, C.T. Pan, Y.C. Chen, L.W. Lin, I.C. Wu, K.H. Hung, Y.R. Lin, H.L. Huang, C.F. Liu, S.W. Mao, and S.W. Kuo, Opt. Mater. 39, 118 (2015).CrossRefGoogle Scholar
  35. 35.
    M. Sivakumar, S. Kanagesan, V. Umapathy, R.S. Babu, and S. Nithiyanantham, J. Supercond. Nov. Magn. 26, 725 (2013).CrossRefGoogle Scholar
  36. 36.
    A. Katoch, Z.U. Abideen, J.H. Kim, and S.S. Kim, Sens. Actuator B-Chem. 232, 698 (2016).CrossRefGoogle Scholar
  37. 37.
    N.J. Dayan, S.R. Sainkar, R.N. Karekar, and R.C. Aiyer, Thin Solid Films 325, 254 (1998).CrossRefGoogle Scholar
  38. 38.
    X. Li, H. Zhang, C.H. Feng, Y.F. Sun, J. Ma, C. Wang, and G.Y. Lu, RSC Adv. 4, 27552 (2014).CrossRefGoogle Scholar
  39. 39.
    D.P. Li, B.B. Zhang, J.C. Xu, Y.B. Han, H.X. Jin, D.F. Jin, X.L. Peng, H.L. Ge, and X.Q. Wang, Nanotechnology 27, 6 (2016).Google Scholar
  40. 40.
    X.H. Sun, H.M. Ji, X.L. Li, S. Cai, and C.M. Zheng, J. Alloy. Compd. 600, 111 (2014).CrossRefGoogle Scholar
  41. 41.
    K.I. Choi, H.R. Kim, K.M. Kim, D.W. Li, G.Z. Cao, and J.H. Lee, Sens. Actuator B-Chem. 146, 183 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Textile and Material EngineeringDalian Polytechnic UniversityDalianChina

Personalised recommendations