Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy

Article
  • 3 Downloads

Abstract

Si-rich SiN x films with different stoichiometry were grown on Si substrate by plasma-enhanced chemical vapor deposition. The Si content was varied by changing the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Conventional furnace annealing at 1100°C for 30 min was applied to produce the Si quantum dots (QDs) in the SiN x films. Spectroscopic ellipsometry was used to determine the refractive index of the SiN x films that allowed estimating the film's stoichiometry. Fourier transform infrared spectroscopy has been also used to confirm the stoichiometry and microstructure. Photoluminescence (PL) spectra of Si-rich SiN x films are complex. A non-monotonous variation of the different PL peaks versus Si excess contents testifies to the competition of different radiative channels. The analysis of PL spectra, measured at the different excitation light energies and variable temperatures, has revealed that the PL bands with the peaks within the range 2.1–3.0 eV are related to the carrier recombination via radiative native defects in the SiN x host. Simultaneously, the PL bands with the peaks at 1.5–2.0 eV are caused by the exciton recombination in the Si QDs of different sizes. The way to control the SiN x emission is discussed.

Keywords

Silicon quantum dots silicon nitride photoluminescence spectroscopic ellipsometry native defects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.Y. Kim, N.M. Park, K.H. Kim, G.Y. Sunga, Y.W. Ok, T.Y. Seong, and C.J. Choi, Appl. Phys. Lett. 85, 5355 (2004).CrossRefGoogle Scholar
  2. 2.
    G.Y. Sung, N.M. Park, J.H. Shin, K.H. Kim, T.Y. Kim, K.S. Cho, and C. Huh, IEEE J. Sel. Top. Quant. Elect. 12, 1545 (2006).CrossRefGoogle Scholar
  3. 3.
    N.M. Park, C.J. Choi, T.Y. Seong, and S.J. Park, Phys. Rev. Lett. 86, 1355 (2001).CrossRefGoogle Scholar
  4. 4.
    L. Dal Negro, J.H. Yi, V. Nguyen, Y. Yi, J. Michel, and L.C. Kimerling, Appl. Phys. Lett. 86, 261905 (2005).CrossRefGoogle Scholar
  5. 5.
    T.V. Torchynska, J.L. Casas, E. Espinola, L.V. Hernandez, F.D. Khomenkova, and A. Slaoui, Thin Solid Films 581, 65 (2015).CrossRefGoogle Scholar
  6. 6.
    T.V. Torchynska, J.L. Casas Espinola, L. Khomenkova, V.E. Hernandez, J.A. Andraca Adame, and A. Slaoui, Mater. Sci. Semicond. Proc. 37, 46 (2015).CrossRefGoogle Scholar
  7. 7.
    J. Kistner, X. Chen, Y. Weng, H.P. Strunk, and M.B. Schubert, J. Appl. Phys. 110, 023520 (2011).CrossRefGoogle Scholar
  8. 8.
    X. Zeng, W. Liao, G. Wen, X. Wen, and W. Zheng, J. Appl. Phys. 115, 154314 (2014).CrossRefGoogle Scholar
  9. 9.
    M. Wang, D. Li, Zh Yuan, D. Yang, and D. Que, Appl. Phys. Lett. 90, 131903 (2007).CrossRefGoogle Scholar
  10. 10.
    Y.Q. Wang, Y.G. Wang, L. Cao, and Z.X. Cao, Appl. Phys. Lett. 83, 3474 (2003).CrossRefGoogle Scholar
  11. 11.
    B.H. Kim, C.H. Cho, T.W. Kim, N.M. Park, and S.J. Park, Appl. Phys. Lett. 86, 091908 (2005).CrossRefGoogle Scholar
  12. 12.
    T.W. Kim, C.H. Cho, B.H. Kim, and S.J. Park, Appl. Phys. Lett. 88, 123102 (2006).CrossRefGoogle Scholar
  13. 13.
    L. Dal Negro, J.H. Yi, L.C. Kimerling, S. Hamel, A. Williamson, and G. Galli, Appl. Phys. Lett. 88, 183103 (2006).CrossRefGoogle Scholar
  14. 14.
    H.L. Hao, L.K. Wu, and W.Z. Shen, Appl. Phys. Lett. 92, 121922 (2008).CrossRefGoogle Scholar
  15. 15.
    A. Rodriguez, J. Arenas, and J.C. Alonso, J. Lumin. 132, 2385 (2012).CrossRefGoogle Scholar
  16. 16.
    H. Kato, N. Kashio, Y. Ohki, K.S. Seol, and T. Noma, J. Appl. Phys. 93, 239 (2003).CrossRefGoogle Scholar
  17. 17.
    M. Molinari, H. Rinnert, and M. Vergnat, J. Appl. Phys. 101, 123532 (2007).CrossRefGoogle Scholar
  18. 18.
    M. Anutgan, T. Anutgan, I. Atilgan, and B. Katircioglu, J. Lumin. 131, 1305 (2011).CrossRefGoogle Scholar
  19. 19.
    A. Rodriguez-Gómez, A. García-Valenzuela, E. Haro-Poniatowski, and J.C. Alonso-Huitrón, J. Appl. Phys. 113, 233102 (2013).CrossRefGoogle Scholar
  20. 20.
    F. Delachat, Elaboration and characterization of Si-licon nanoparticles in silicon nitride for photovoltaic application. in Ph.D. Thesis, InESS-University of Strasbourg, Strasbourg, France (2010)Google Scholar
  21. 21.
    Spectroscopic Ellipsometry Solutions for Thin Film Analysis, HORIBA Scientific, http://www.horiba.com/scientific/products/ellipsometers/
  22. 22.
    T. Torchynska, G. Polupan, L. Khomenkova, and A. Slaoui, MRS Communications 7, 280 (2017).CrossRefGoogle Scholar
  23. 23.
    N.E. Korsunskaya, T.V. Torchynska, LYu Khomenkova, B.R. Dzhumaev, and S.M. Prokes, Microelectr Eng 51–52, 485 (2000).CrossRefGoogle Scholar
  24. 24.
    F. Delachat, M. Carrada, G. Ferblantier, J.-J. Grob, and A. Slaoui, Nanotechnology 20, 415608 (2009).CrossRefGoogle Scholar
  25. 25.
    A.-S. Keita, A. En Naciri, F. Delachat, M. Carrada, G. Ferblantier, and A. Slaoui, J. Appl. Phys. 107, 093516 (2010).CrossRefGoogle Scholar
  26. 26.
    L. Khomenkova, J. Cardin, X. Portier, and F. Gourbilleau, Nanotechnology 21, 285707 (2010).CrossRefGoogle Scholar
  27. 27.
    D.A.G. Bruggeman, Ann. Phys. 416, 636 (1935).CrossRefGoogle Scholar
  28. 28.
    A.R. Forouhi and I. Bloomer, Phys Rev B 34, 7018 (1986).CrossRefGoogle Scholar
  29. 29.
    G.E. Jelisson Jr and F.A. Modine, Appl. Phys. Lett. 69, 371 (1996).CrossRefGoogle Scholar
  30. 30.
    H. Mackel and R. Ludemann, J. Appl. Phys. 92, 2602 (2001).CrossRefGoogle Scholar
  31. 31.
    K. Luke, Y. Okawachi, M.R.E. Lamont, A.L. Gaeta, and M. Lipson, Opt. Lett. 40, 4823 (2015).CrossRefGoogle Scholar
  32. 32.
    D.V. Tsu, G. Lucovsky, and M.J. Mantini, Phys. Rev. B 33, 7069 (1986).CrossRefGoogle Scholar
  33. 33.
    G. Scardera, T. Puzzer, I. Perez-Wurfl, and G. Conibeer, J. Cryst. Growth 310, 3680 (2008).CrossRefGoogle Scholar
  34. 34.
    S.V. Deshpande, E. Gulari, S.W. Brown, and S.C. Rand, J. Appl. Phys. 77, 6534 (1995).CrossRefGoogle Scholar
  35. 35.
    W.I. Warren, P.M. Lenahan, and S.E. Curry, Phys. Rev. Lett. 65, 207 (1990).CrossRefGoogle Scholar
  36. 36.
    B. Sain and D. Das, Phys. Chem. Chem. Phys. 15, 3881 (2013).CrossRefGoogle Scholar
  37. 37.
    V. Alex, S. Finkbeiner, and J. Weber, J. Appl. Phys. 79, 6943 (1996).CrossRefGoogle Scholar
  38. 38.
    T.V. Torchynska, Nanocrystals and quantum dots. Some physical aspects, in Nanocrystals and Quantum Dots of Group IV Semiconductors, ed. by T.V. Torchynska, Yu. Vorobiev. American scientific publisher, Stevenson Ranch, CA, USA, 2010, p. 1Google Scholar
  39. 39.
    C.H. Cho, B.H. Kim, T.W. Kim, S.J. Park, N.M. Park, and G.Y. Sung, Appl. Phys. Lett. 86, 143107 (2005).CrossRefGoogle Scholar
  40. 40.
    T.V. Torchynska, Phys. E 44, 56 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Instituto Politécnico Nacional, ESFMMexico CityMexico
  2. 2.V. Lashkaryov Institute of Semiconductor Physics at NASUKievUkraine
  3. 3.ICubeStrasbourg Cedex 2France

Personalised recommendations