The Composition Dependence of the Band Gap Energy for the O-Rich ZnSexO1−x
- 6 Downloads
Abstract
A model was constructed to describe the band gap reduction of the O-rich ZnSexO1−x. The results show that the band gap reduction resulting from the upward movement of the valence band maximum (VBM) is larger than that resulting from the downward movement of the conduction band minimum (CBM), which suggests that the Se content has a larger influence on the VBM than it does on the CBM. It was also discovered that the physical mechanism for the band evolution in the O-rich range is quite different from that in the Se-rich range. The band gap reduction for the O-rich ZnSexO1−x is mainly due to two factors: the impurity–impurity interaction, and the intraband coupling within the valence band and the conduction band.
Keywords
ZnSeO band gap energy composition dependence O-richPreview
Unable to display preview. Download preview PDF.
References
- 1.A. Polimeni, M. Capizzi, Y. Nabetani, Y. Ito, T. Okuno, T. Kato, T. Matsumoto, and T. Hirai, Appl. Phys. Lett. 84, 3304 (2004).CrossRefGoogle Scholar
- 2.C.Z. Zhao, N.N. Li, T. Wei, C.X. Tang, K.Q. Lu, Appl. Phys. Lett. 100, 142112 (2012); Appl. Phys. Lett. 100, 199903 (2012).Google Scholar
- 3.C.Y. Moon and S.H. Wei, Phys. Rev. B 74, 233202 (2006).CrossRefGoogle Scholar
- 4.W. Shan, W. Walukiewicz, J.W. Ager III, K.M. Yu, J. Wu, E.E. Haller, Y. Nabetani, T. Mukawa, Y. Ito, and T. Matsumoto, Appl. Phys. Lett. 83, 299 (2003).CrossRefGoogle Scholar
- 5.C.C. Cheng, W.Y. Chen, H.H. Ke, C.Y. Chen, J.I. Chyi, and T.M. Hsu, Solid State Commun. 172, 20 (2013).CrossRefGoogle Scholar
- 6.Y. Nabetani, T. Mukawa, Y. Ito, T. Kato, and T. Matsumoto, Appl. Phys. Lett. 83, 1148 (2003).CrossRefGoogle Scholar
- 7.C.Y. Chen, C.Y. Yang, J.I. Chyi, and C.H. Wu, J. Cryst. Growth 378, 180 (2013).CrossRefGoogle Scholar
- 8.K. Iwata, P. Fons, A. Yamada, H. Shibata, K. Matsubara, K. Nakahara, H. Takasu, and S. Niki, Phys. Status Solidi (b) 229, 887 (2002).CrossRefGoogle Scholar
- 9.M.A. Mayer, D.T. Speaks, K.M. Yu, S.S. Mao, E.E. Haller, and W. Walukiewicz, Appl. Phys. Lett. 97, 022104 (2010).CrossRefGoogle Scholar
- 10.M.A. Mayer, K. Man Yu, D.T. Speaks, J.D. Denlinger, L.A. Reichertz, J.W. Beeman, E.E. Haller, and W. Walukiewicz, J. Phys. Chem. C 116, 15281 (2012).CrossRefGoogle Scholar
- 11.C.Z. Zhao, H.F. Guo, L.Y. Chen, C.X. Tang, and K.Q. Lu, Commun. Theor. Phys. 65, 635 (2016).CrossRefGoogle Scholar
- 12.Y. Zhang, A. Mascarenhas, H.P. Xin, and C.W. Tu, Phys. Rev. B 63, 161303 (2001).CrossRefGoogle Scholar
- 13.T. Taliercio, R. Intartaglia, B. Gil, P. Lefebvre, T. Bretagnon, U. Tisch, E. Finkman, J. Salzman, M.A. Pinault, M. Laügt, and E. Tournie, Phys. Rev. B 69, 073303 (2004).CrossRefGoogle Scholar
- 14.V.V. Khomyak, O.M. Slyotov, and S.M. Chupyra, Appl. Opt. 53, B110 (2014).CrossRefGoogle Scholar
- 15.J.C. Lee, J.E. Lee, J.W. Lee, J.C. Lee, N.G. Subramaniam, T.W. Kang, and R. Ahuja, J. Alloys Compd. 585, 94 (2014).CrossRefGoogle Scholar
- 16.J. Wu, K. Okuura, H. Miyake, and K. Hiramatsu, Appl. Phys. Express 2, 111004 (2009).CrossRefGoogle Scholar
- 17.D. Chen and N.M. Ravindra, Nanomater. Energy 2, 288 (2013).CrossRefGoogle Scholar
- 18.S. Adichi, Properties of Semiconductor Alloys: Group IV, III–V and II–VI Semiconductors (London: Wiley, 2009).CrossRefGoogle Scholar
- 19.C.Z. Zhao, T. Wei, X.D. Sun, S.S. Wang, and K.Q. Lu, Phys. B 502, 21 (2016).CrossRefGoogle Scholar
- 20.S.H. Wei and A. Zunger, Phys. Rev. Lett. 76, 664 (1996).CrossRefGoogle Scholar