Shear Strength of Square Graphene Nanoribbons beyond Wrinkling

Article
  • 16 Downloads

Abstract

Atomistic modeling of armchair and zigzag graphene nanoribbons (GNRs) has been performed to investigate the post-wrinkling behavior under in-plane (xy) shear deformation. Simulations were performed at 300 K for square GNRs with size ranging from 2.5 nm to 20 nm. Shear stresses led only to diagonal tension, and wrinkling was not accompanied by any diagonal compressive force. Once the diagonal tension reached its ultimate elastic level, three major stress-relaxing phenomena were observed. The type of stress-relaxing phenomenon involved greatly affected the mechanical behavior in terms of the slope of the stress–strain diagram beyond the elastic range. The results showed that the average slope of the stress–strain relation beyond the ultimate elastic stress decreased with the increase of the GNR size. Moreover, the slope of the shear stress–strain curve beyond the ultimate elastic stress was always greater for armchair than for zigzag GNRs. GNRs can sustain very high plastic shear strains beyond 100% before failure. The ultimate elastic stress can range from 20 GPa to 50 GPa, occurring at shear strain ranging from 52% to 19%. The ultimate elastic stress and strain were inversely proportional to the size of the GNR with a power factor ranging from 0.261 for armchair GNRs to 0.354 for zigzag GNRs due to the decrease in the effective width for diagonal tension.

Keywords

Molecular dynamics simulations shear strength unravelling wrinkling buckling GNRs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This project is sponsored by the United States Navy, Office of Naval Research.

Supplementary material

Supplementary material 1 (MP4 17480 kb)

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  2. 2.
    K.I. Bolotin, K.J. Sikes, Z.D. Jiang, M. Klima, G. Fudenberg, J. Hone, P.H. Kim, and H.L. Stormer, Solid State Commun. 146, 351 (2008).CrossRefGoogle Scholar
  3. 3.
    Y. Chu, T. Ragab, and C. Basaran, Carbon 89, 169 (2015).CrossRefGoogle Scholar
  4. 4.
    B. Mortazavi, Z. Fan, L.F.C. Pereira, A. Harju, and T. Rabczuk, Carbon 103, 318 (2016).CrossRefGoogle Scholar
  5. 5.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).CrossRefGoogle Scholar
  6. 6.
    Y. Chu, T. Ragab, P. Gautreau, and C. Basaran, J. Nanomech. Micromech. 5, 04015001 (2015).CrossRefGoogle Scholar
  7. 7.
    Y.B. Chu, T. Ragab, and C. Basaran, Comput. Mater. Sci. 81, 269 (2014).CrossRefGoogle Scholar
  8. 8.
    T. Enoki, S. Fujii, and K. Takai, Carbon 50, 3141 (2012).CrossRefGoogle Scholar
  9. 9.
    H. Zhao, K. Min, and N.R. Aluru, Nano Lett. 9, 3012 (2009).CrossRefGoogle Scholar
  10. 10.
    C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).CrossRefGoogle Scholar
  11. 11.
    R. Rasuli, A. Iraji zad, and M.M. Ahadian, Nanotechnology 21, 185503 (2010).CrossRefGoogle Scholar
  12. 12.
    A. Faccio Ricardo, P. Denis, H. Pardo, C. Goyenola, and W.Á. Mombrú, J. Phys. Condens. Matter 21, 285304 (2009).CrossRefGoogle Scholar
  13. 13.
    Q.X. Pei, Y.W. Zhang, and V.B. Shenoy, Carbon 48, 898 (2010).CrossRefGoogle Scholar
  14. 14.
    K. Min and N.R. Aluru, Appl. Phys. Lett. 98, 013113 (2011).CrossRefGoogle Scholar
  15. 15.
    A. Udupa and A. Martini, Carbon 49, 3571 (2011).CrossRefGoogle Scholar
  16. 16.
    C. Wang, Y. Liu, L. Lan, and H. Tan, Nanoscale 5, 4454 (2013).CrossRefGoogle Scholar
  17. 17.
    A. Hadizadeh Kheirkhah, E. Saeivar Iranizad, M. Raeisi, and A. Rajabpour. Solid State Commun. 177, 98 (2014).CrossRefGoogle Scholar
  18. 18.
    Q. Zheng, Y. Geng, S. Wang, Z. Li, and J.-K. Kim, Carbon 48, 4315 (2010).CrossRefGoogle Scholar
  19. 19.
    T. Ragab, J. McDonald, and C. Basaran, Diam. Relat. Mater. 74, 9 (2017).CrossRefGoogle Scholar
  20. 20.
    D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, and S.B. Sinnott, J. Phys. Condens. Matter 14, 783 (2002).CrossRefGoogle Scholar
  21. 21.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak, J. Chem. Phys. 81, 3684 (1984).CrossRefGoogle Scholar
  22. 22.
    K. Mylvaganam and L.C. Zhang, Carbon 42, 2025 (2004).CrossRefGoogle Scholar
  23. 23.
    T. Ragab and C. Basaran, Comput. Mater. Sci. 46, 1135 (2009).CrossRefGoogle Scholar
  24. 24.
    Y. Huang, J. Wu, and K.C. Hwang, Phys. Rev. B 74, 245413 (2006).CrossRefGoogle Scholar
  25. 25.
    T. Ragab and C. Basaran, J. Electron. Packag. 133, 020903 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Arkansas State UniversityState UniversityUSA
  2. 2.Electronic Packaging LaboratoryUniversity at BuffaloBuffaloUSA

Personalised recommendations