Magneto Tuning of a Ferrite Dielectric Resonator Antenna Based on LiFe5O8 Matrix

  • J. E. V. de Morais
  • A. J. N. de Castro
  • R. G. M. Oliveira
  • F. F. do Carmo
  • A. J. M. Sales
  • J. C. Sales
  • M. A. S. Silva
  • D. X. Gouveia
  • M. M. Costa
  • A. R. Rodrigues
  • A. S. B. Sombra
Article
  • 13 Downloads

Abstract

LiFe5O8 (LFO) spinel-like material has been studied for use in ferrite resonator antennas (FRAs). Antenna parameters such as gain and return loss were greatly affected when an external magnetic field was applied to the FRA. The temperature coefficient of the resonant frequency (τ f ) for the FRA presented a value of − 482.16 ppm/°C. The magnetic hysteresis results showed that the LFO was a soft ferrite, considering the values of the remanent magnetization (Mr = 5.95 emu g−1), coercive field (0.76 mT), and saturation magnetization (32.15 emu g−1). The magnetodielectric resonator presented a tuning effect in the resonant frequency as a function of the external magnetic field. The antenna bandwidth was also affected by the presence of the magnetic field. LFO is a soft ferrite with applications in microwave circuits, antennas, and devices for operation at microwave frequencies due to its magnetization and demagnetization properties. Impedance study revealed increasing conductivity from room to higher temperature with low activation energy (0.36 eV).

Keywords

FRA LFO hysteresis spectroscopy impedance τf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Financial support from the Brazilian Agency for Scientific and Technological Development CAPES and the US Air Force Office of Scientific Research (AFOSR, FA9550-16-1-0127) is gratefully acknowledged.

References

  1. 1.
    A.J. Moulson and J.M. Herbert, Electroceramics: Materials, Applications (Hoboken: Wiley, 2003).CrossRefGoogle Scholar
  2. 2.
    E.J.J. Mallmann, A.S.B. Sombra, J.C. Goes, and P.B.A. Fechine, Solid State Phenom. 202, 65 (2013).CrossRefGoogle Scholar
  3. 3.
    S. Parida, et al., J. Alloys Compd. 528, 126 (2012).CrossRefGoogle Scholar
  4. 4.
    J.T.H.S. Martin, Y.M.M. Antar, A.A. Kishk, A. Ittipiboon, and M. Cuhaci, Electron. Lett. 26, 2015 (1990).CrossRefGoogle Scholar
  5. 5.
    L.-R. Tan, W. Rui-Xin, C.-Y. Wang, and Y. Poo, IEEE Antennas Wirel. Propag. Lett. 13, 325 (2014).CrossRefGoogle Scholar
  6. 6.
    M. George, S.S. Nair, A.M. John, P.A. Joy, and M.R. Anantharaman, J. Phys. D Appl. Phys. 39, 900 (2006).CrossRefGoogle Scholar
  7. 7.
    H.-I. Hsiang, W.-C. Kuo, and C.-S. Hsi, J. Eur. Ceram. Soc. 37, (2017).Google Scholar
  8. 8.
    H.M. El-Sayed, I.A. Ali, A. Azzam, and A.A. Sattar, J. Magn. Magn. Mater. 424, 226 (2017).CrossRefGoogle Scholar
  9. 9.
    G.O. White and C.E. Patton, J. Magn. Magn. Mater. 9, 299 (1978).CrossRefGoogle Scholar
  10. 10.
    R.V.B. Campos, et al., J. Electron. Mater. 44, 4220 (2015).CrossRefGoogle Scholar
  11. 11.
    R.G.M. Oliveira, et al., Microw. Opt. Technol. Lett. 58, 1211 (2016).CrossRefGoogle Scholar
  12. 12.
    R. Khalili Senobari, J. Sadeh, and H. Borsi, Electr. Power Syst. Res. 155, 172 (2018).CrossRefGoogle Scholar
  13. 13.
    M.I. Bichurin, V.M. Petrov, Y.V. Kiliba, and G. Srinivasan, Phys. Rev. B 66, 134404 (2002).CrossRefGoogle Scholar
  14. 14.
    M.A.S. Silva, T.S.M. Fernandes, and A.S.B. Sombra, J. Appl. Phys. 112, 74106 (2012).CrossRefGoogle Scholar
  15. 15.
    V. Pecharsky and P. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials (New York: Springer, 2009). https://doi.org/10.1007/978-0-387-09579-0.Google Scholar
  16. 16.
    R.J.D. Tilley, J. Chem. Inf. Model. 53, (2013).Google Scholar
  17. 17.
    S.A. Mazen and N.I. Abu-Elsaad, Appl. Nanosci. 5, 105 (2015).CrossRefGoogle Scholar
  18. 18.
    S. Wang, et al., Chem. Eng. J. 332, 160 (2018).CrossRefGoogle Scholar
  19. 19.
    A.C.H. Barreto, et al., J. Mater. Eng. Perform. 22, 2073 (2013).CrossRefGoogle Scholar
  20. 20.
    D. Bhalla, D. Singh, S. Singh, and D. Seth, Am. J. Mater. Sci. 2, 165 (2013).CrossRefGoogle Scholar
  21. 21.
    W. Cai. The physics of soft ferrite. In: Proceedings of Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference (cat. no. 99CH37035) 701 (IEEE). https://doi.org/10.1109/eeic.1999.826295.
  22. 22.
    M. Usakova, E. Usak, R. Dosoudil, and R. Sykora, IEEE Trans. Magn. 53, 1 (2017).CrossRefGoogle Scholar
  23. 23.
    A. Petosa, J.S. Wight, and A. Ittipiboon, Electron. Lett. 30, 1261 (1994).CrossRefGoogle Scholar
  24. 24.
    P.B.A. Fechine, et al., Microw. Opt. Technol. Lett. 50, 2852 (2008).CrossRefGoogle Scholar
  25. 25.
    L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, and V.K. Varadan, Microwave Electronics: Measurement and Materials Characterization (Chichester: Wiley, 2004).CrossRefGoogle Scholar
  26. 26.
    D. Smugala, M. Bonk, and R. Ziemski, Measurement 114, 428 (2018).CrossRefGoogle Scholar
  27. 27.
    C.A. Balanis, Antenna Theory: Analysis and Design (New York: Wiley, 2012).Google Scholar
  28. 28.
    P. Gas, Biocybern. Biomed. Eng. 37, 78–93 (2017).CrossRefGoogle Scholar
  29. 29.
    A. Petosa, Dielectric Resonator Antenna Handbook (Norwood: Artech House, 2007).Google Scholar
  30. 30.
    R.P. Patil, S.B. Patil, B.V. Jadhav, S.D. Delekar, and P.P. Hankare, J. Magn. Magn. Mater. 401, 870 (2016).CrossRefGoogle Scholar
  31. 31.
    J.M.S. Filho, et al., J. Electron. Mater. 46, 4344 (2017).CrossRefGoogle Scholar
  32. 32.
    M. Chandrasekhar, D.K. Khatua, R. Pattanayak, and P. Kumar, J. Phys. Chem. Solids 111, 160 (2017).CrossRefGoogle Scholar
  33. 33.
    X.-Z. Yuan, C. Song, H. Wang, and J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells (London: Springer, 2010). https://doi.org/10.1007/978-1-84882-846-9.CrossRefGoogle Scholar
  34. 34.
    D.V.M. Paiva, M.A.S. Silva, A.S.B. Sombra, and P.B.A. Fechine, RSC Adv. 6, 42502 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • J. E. V. de Morais
    • 1
    • 2
  • A. J. N. de Castro
    • 1
    • 2
  • R. G. M. Oliveira
    • 1
    • 2
  • F. F. do Carmo
    • 2
  • A. J. M. Sales
    • 2
    • 6
  • J. C. Sales
    • 1
    • 2
  • M. A. S. Silva
    • 2
  • D. X. Gouveia
    • 5
  • M. M. Costa
    • 3
  • A. R. Rodrigues
    • 4
  • A. S. B. Sombra
    • 2
  1. 1.Telecommunication Engineering Department (UFC)FortalezaBrazil
  2. 2.Physics Department, Telecommunication, Science and Engineering of Materials Laboratory (LOCEM)FortalezaBrazil
  3. 3.Institute of Physics, LACANM, UFMTCuiabáBrazil
  4. 4.Physics DepartmentFederal University of Pernambuco (UFPe)RecifeBrazil
  5. 5.Federal Institute of CearáFortalezaBrazil
  6. 6.I3N – Physics DepartmentAveiro UniversityAveiroPortugal

Personalised recommendations