Structural, Optical and Ethanol Sensing Properties of Dy-Doped SnO2 Nanoparticles
- 11 Downloads
Abstract
We report a facile co-precipitation synthesis of dysprosium (Dy3+) doped tin oxide (SnO2) thick films and their use as gas sensors. The doping percentage (Dy3+) was varied from 1 mol.% to 4 mol.% with the step of 1 mol.%. As-produced material with varying doping levels were sintered in air; and by using a screen printing technique, their thick films were developed. Prior to sensing performance investigations, the films were examined for structural, morphological and compositional properties using x-ray diffraction, a field emission scanning electron microscope, a transmission electron microscope, selected area electron diffraction, energy dispersive analysis by x-rays, Fourier transform infrared spectroscopy and Raman spectroscopic techniques. The structural analyses revealed formation of single phase nanocrystalline material with tetragonal rutile structure of SnO2. The morphological analyses confirmed the nanocrystalline porous morphology of as-developed material. Elemental analysis defined the composition of material in accordance with the doping concentration. The produced sensor material exhibited good response towards different reducing gases (acetone, ethanol, LPG, and ammonia) at different operating temperatures. The present study confirms that the Dy3+ doping in SnO2 enhances the response towards ethanol with reduction in operating temperature. Particularly, 3 mol.% Dy3+ doped sensor exhibited the highest response (∼ 92%) at an operating temperature of 300°C with better selectivity, fast response (∼ 13 s) and recovery (∼ 22 s) towards ethanol.
Graphical Abstract
Keywords
Dysprosium tin oxide ethanol sensor thick filmsPreview
Unable to display preview. Download preview PDF.
References
- 1.C.A. Papadopoulos, D.S. Vlaehos, and J.N. Avaritsiotis, Sens. Actuators B Chem. 32, 61 (1996).CrossRefGoogle Scholar
- 2.C. Wang and P. Sahay, Sensors 9, 8230 (2009).CrossRefGoogle Scholar
- 3.K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, Sens. Actuators B Chem. 160, 580 (2011).CrossRefGoogle Scholar
- 4.K. Brudzewski, S. Osowski, and W. Pawlowski, Sens. Actuators B Chem. 161, 528 (2012).CrossRefGoogle Scholar
- 5.P. Mielle and F. Marquis, Sens. Actuators B Chem. 76, 470 (2001).CrossRefGoogle Scholar
- 6.W.J. Fleming, IEEE Sens. 1, 296 (2001).CrossRefGoogle Scholar
- 7.G. Neri, A. Bonavita, G. Micali, N. Donato, F.A. Deorsola, P. Mossino, I. Amato, and B. De Benedetti, Sens. Actuators B Chem. 117, 196 (2006).CrossRefGoogle Scholar
- 8.B.P.J. de Lacy Costello, R.J. Ewen, N. Guernion, and N.M. Ratcliffe, Sens. Actuators B Chem. 87, 207 (2002).CrossRefGoogle Scholar
- 9.N.V. Hieu, N.A.P. Duc, T. Trung, M.A. Tuan, and N.D. Chien, Sens. Actuators B Chem. 144, 450 (2010).CrossRefGoogle Scholar
- 10.C.C. Pang, M.H. Chen, T.Y. Lin, and T.C. Chou, Sens. Actuators B Chem. 73, 221 (2001).CrossRefGoogle Scholar
- 11.G. Korotcenkov, Mater. Sci. Eng., B 139, 1 (2007).CrossRefGoogle Scholar
- 12.S. Chaisitsak, Sensors 11, 7127 (2011).CrossRefGoogle Scholar
- 13.S.K. Gupta, A. Joshi, and M.J. Kaur, Chem. Sci. 122, 57 (2010).CrossRefGoogle Scholar
- 14.D. Wang, J. Jin, D. Xia, Q. Ye, and J. Long, Sens. Actuators B Chem. 66, 260 (2000).CrossRefGoogle Scholar
- 15.A.P. Maciel, P.N. Lisboa-Filho, E.R. Leite, C.O. Paiva-Santos, W.H. Schreiner, Y. Maniette, and E. Longo, J. Eur. Ceram. Soc. 23, 707 (2003).CrossRefGoogle Scholar
- 16.G.T. Ang, G. HoonToh, M.Z. Abu Bakar, A.Z. Abdullah, and M.R. Othman, Process Saf. Environ. Prot. 89, 186 (2011).CrossRefGoogle Scholar
- 17.H. Zhang, Z. Li, L. Liu, X. Xu, Z. Wang, W. Wang, W. Zheng, and B. Dong, Sens. Actuators B Chem. 147, 111 (2010).CrossRefGoogle Scholar
- 18.M. Hubner, S. Hafner, N. Barsan, and U. Weimar, Sens. Proc. Eng. 25, 104 (2011).CrossRefGoogle Scholar
- 19.T.T. Wang, S.Y. Ma, L. Cheng, J. Luo, X.H. Jiang, and W.X. Jin, Sens. Actuators B Chem. 216, 212 (2015).CrossRefGoogle Scholar
- 20.S.M. Kanan, O.M. El-Kadri, I.A. Abu-Yousef, and M.C. Kanan, Sensors 9, 8158 (2009).CrossRefGoogle Scholar
- 21.L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, Sens. Actuators B Chem. 162, 237 (2012).CrossRefGoogle Scholar
- 22.C. Liewhiran and S. Phanichphant, Sensors 7, 1159 (2006).CrossRefGoogle Scholar
- 23.Y.I. Lee, K.J. Lee, D.H. Lee, Y.K. Jeong, H.S. Lee, and Y.H. Choa, Curr. Appl. Phys. 9, 579 (2009).Google Scholar
- 24.Z. Tianshu, P. Hing, Y. Liand, and Z. Jiancheng, Sens. Actuators B Chem. 60, 208 (1999).CrossRefGoogle Scholar
- 25.K. Galatsis, L. Cukrov, W. Wlodarski, P. McCormick, K. Kalantar-zadeh, E. Comini, and G. Sberveglieri, Sens. Actuators B Chem. 93, 562 (2003).CrossRefGoogle Scholar
- 26.C. Liewhiran and S. Phanichphant, Sensors 7, 1159 (2006).CrossRefGoogle Scholar
- 27.S.C. Tsang and C. Bulpitt, Sens. Actuators B Chem. 52, 226 (1998).CrossRefGoogle Scholar
- 28.S. Matsushima, T. Maekawal, J. Tamaki, N. Miura, and N. Uamazoe, Chem. Lett. 18, 845 (1989).CrossRefGoogle Scholar
- 29.F.I. Shaikh, L.P. Chikhale, I.S. Mulla, and S.S. Suryavanshi, J. Mater. Sci.: Mater. Electron. 28, 43128 (2017).Google Scholar
- 30.F.I. Shaikh, L.P. Chikhale, I.S. Mulla, and S.S. Suryavanshi, Powder Technol. 326, 479 (2018).CrossRefGoogle Scholar
- 31.F.J. Berry and A.G. Maddock, Radiochim. Acta 24, 32 (1977).CrossRefGoogle Scholar
- 32.S.K. Pillai, L.M. Sikhwivhilu, and T.K. Hillie, Mater. Chem. Phys. 120, 619 (2010).CrossRefGoogle Scholar
- 33.L.K. Bagal, J.Y. Patil, I.S. Mulla, and S.S. Suryavanshi, Ceram. Int. 38, 4835 (2012).CrossRefGoogle Scholar
- 34.L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, and W.L. Zhou, J. Alloys Compd. 454, 261 (2008).CrossRefGoogle Scholar
- 35.P.S. Peercy and B. Morosin, Phys. Rev. B 7, 2779 (1973).CrossRefGoogle Scholar
- 36.C.H. Shek, G.M. Lin, and J.K.L. Lai, Nanostruct. Mater. 11, 831 (1999).CrossRefGoogle Scholar
- 37.K.N. Yu, Y.H. Xiong, Y.L. Liu, and C.S. Xiong, Phys. Rev. B 55, 2666 (1997).CrossRefGoogle Scholar
- 38.A. Dieguez, A. Ramano-Rodrigues, A. Vila, and J.R. Morante, J. Appl. Phys. 90, 1550 (2001).CrossRefGoogle Scholar
- 39.L.P. Chikhale, F.I. Shaikh, I.S. Mulla, and S.S. Suryavanshi, Ceram. Int. 43, 10307 (2017).CrossRefGoogle Scholar
- 40.X. Niu, H. Zhong, X. Wang, and K. Jiang, Sens. Actuators, B 115, 434 (2006).CrossRefGoogle Scholar
- 41.Z. Wang and L. Liu, Mater. Lett. 63, 917 (2009).CrossRefGoogle Scholar
- 42.F.I. Shaikh, L.P. Chikhale, I.S. Mulla, and S.S. Suryavanshi, J. Rare Earths 35, 813 (2017).CrossRefGoogle Scholar
- 43.Y.G. Li, L. Qiao, L.L. Wang, Y. Zeng, W.Y. Fu, and H.B. Yang, Appl. Surf. Sci. 285, 130 (2013).CrossRefGoogle Scholar
- 44.B.B. Wang, X.X. Fu, F. Liu, S.L. Shi, J.P. Cheng, and X.B. Zhang, J. Alloys Compd. 587, 82 (2014).CrossRefGoogle Scholar