Role of Silver Salts Lattice Energy on Conductivity Drops in Chitosan Based Solid Electrolyte: Structural, Morphological and Electrical Characteristics

  • Shujahadeen B. Aziz
  • Omed Gh. Abdullah
  • Sarkawt A. Hussein
Article
  • 5 Downloads

Abstract

The influence of anion type on silver ion reduction and drop in direct current (DC) conductivity was investigated experimentally. The structural, optical, morphological and electrical properties of the samples were investigated using x-ray diffraction (XRD), ultraviolet-visible (UV–Vis), optical micrographs (OM) and impedance spectroscopy. The XRD results reveal significant disruption in the crystalline structure of chitosan (CS) for different concentrations of silver nitrate (AgNt) salt. The localized surface resonance plasmonic (LSRP) peaks that were observed for CS:AgNt samples, along with the white silver specs detected by OM technique confirm the formation of Ag nanoparticles. The appearance of obvious dark regions in the CS:AgNt system reveals the existence of a large percentage of amorphous domains. The nonexistence of spherulitic texture confirms the amorphous nature of the samples. The second semicircle in an impedance plot can be attributed to an Ag nanoparticle grain boundary. The established relationships between dielectric constant and carrier concentration and the behavior of dielectric constant versus salt concentration were used to explain the phenomenon of ion–ion association. The continuous increase of DC conductivity was noticed at high temperatures, which was then explained on the basis of lattice energy of silver salts. The influences of anion size on the rate of silver ion reductions are also interpreted.

Keywords

Chitosan biopolymer XRD analysis UV–Vis study optical micrograph lattice energy of salts electrical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Sownthari and S.A. Suthanthiraraj, eXPRESS Polym. Lett. 7, 495 (2013).CrossRefGoogle Scholar
  2. 2.
    M.N. Chai and M.I.N. Isa, Sci. Rep. 6, 27328 (2016).CrossRefGoogle Scholar
  3. 3.
    N.S. Salleh, S.B. Aziz, Z. Aspanut, and M.F.Z. Kadir, Ionics 22, 2157 (2016).CrossRefGoogle Scholar
  4. 4.
    S.B. Aziz and Z.H.Z. Abidin, Mater. Chem. Phys. 144, 280 (2014).CrossRefGoogle Scholar
  5. 5.
    S.B. Aziz, Adv. Mater. Sci. Eng. 2016, 2527013 (2016).CrossRefGoogle Scholar
  6. 6.
    S.B. Aziz, M.F.Z. Kadir, and Z.H.Z. Abidin, Int. J. Electrochem. Sci. 11, 9228 (2016).CrossRefGoogle Scholar
  7. 7.
    N.K. Jaafar, A. Lepit, N.A. Aini, A. Saat, A.M.M. Ali, and M.Z.A. Yahya, Mater. Res. Innov. 15, s202 (2011).CrossRefGoogle Scholar
  8. 8.
    S.N.S. Begum, R. Pandian, V.K. Aswal, and R.P. Ramasamy, J. Nanosci. Nanotechnol. 14, 5761 (2014).CrossRefGoogle Scholar
  9. 9.
    O.G. Abdullah, R.R. Hanna, and Y.A.K. Salman, J. Mater. Sci. Mater. Electron. 28, 10283 (2017).CrossRefGoogle Scholar
  10. 10.
    J.F. Du, Y. Bai, D.A. Pan, W.Y. Chu, and L.J. Qiao, J. Polym. Sci. Polym. Phys. 47, 549 (2009).CrossRefGoogle Scholar
  11. 11.
    S.B. Aziz, Appl. Phys. A 122, 706 (2016).CrossRefGoogle Scholar
  12. 12.
    S.B. Aziz, Z.H.Z. Abidin, and M.F.Z. Kadir, Phys. Scr. 90, 035808 (2015).CrossRefGoogle Scholar
  13. 13.
    S.B. Aziz, Z.H.Z. Abidin, and A.K. Arof, eXPRESS Polym. Lett. 4, 300 (2010).CrossRefGoogle Scholar
  14. 14.
    S.B. Aziz, O.G. Abdullah, D.R. Saber, M.A. Rasheed, and H.M. Ahmed, Int. J. Electrochem. Sci. 12, 363 (2017).CrossRefGoogle Scholar
  15. 15.
    S.B. Aziz, O.G. Abdullah, and M.A. Rasheed, J. Appl. Polym. Sci. 134, 44847 (2017).Google Scholar
  16. 16.
    J.H. Kim, C.K. Kim, J. Won, and Y.S. Kang, J. Membr. Sci. 250, 207 (2005).CrossRefGoogle Scholar
  17. 17.
    S.B. Aziz, Z.H.Z. Abidin, and A.K. Arof, Phys. B 405, 4429 (2010).CrossRefGoogle Scholar
  18. 18.
    S.B. Aziz and Z.H.Z. Abidin, J. Soft Matter 2013, 323868 (2013).CrossRefGoogle Scholar
  19. 19.
    Y. Wan, K.A.M. Creber, B. Peppley, and V.T. Bui, J. Membr. Sci. 280, 666 (2006).CrossRefGoogle Scholar
  20. 20.
    E. Belamie, A. Domard, H. Chanzy, and M.M.G. Guille, Langmuir 15, 1549 (1999).CrossRefGoogle Scholar
  21. 21.
    A. Pawlicka, M. Danczuk, W. Wieczorek, and E.Z. Monikowska, J. Phys. Chem. A 112, 8888 (2008).CrossRefGoogle Scholar
  22. 22.
    A.O. Madrazo, L. David, S. Trombotto, J.M. Lucas, C.P. Covas, and A. Domard, Carbohydr. Polym. 83, 1730 (2011).CrossRefGoogle Scholar
  23. 23.
    J.H. Kim and Y.M. Lee, Polymer 34, 1952 (1993).CrossRefGoogle Scholar
  24. 24.
    S.N.F. Yusuf, A.D. Azzahari, R. Yahya, S.R. Majid, M.A. Careem, and A.K. Arof, RSC Adv. 6, 27714 (2016).CrossRefGoogle Scholar
  25. 25.
    V.V.R.N. Rao, T.S. Rao, and N.N. Das, J. Phys. Chem. Solids 47, 33 (1986).CrossRefGoogle Scholar
  26. 26.
    C.U. Devi, A.K. Sharma, and V.V.R.N. Rao, Mater. Lett. 56, 167 (2002).CrossRefGoogle Scholar
  27. 27.
    S.B. Aziz, M.A. Rasheed, and Z.H.Z. Abidin, J. Electron. Mater. (2017).  https://doi.org/10.1007/s11664-017-5515-8.Google Scholar
  28. 28.
    S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, and H.M. Ahmed, J. Mater. Sci. Mater. Electron. 27, 4163 (2016).CrossRefGoogle Scholar
  29. 29.
    S.A. Hashmi and S. Chandra, Mater. Sci. Eng. B 34, 18 (1995).CrossRefGoogle Scholar
  30. 30.
    T. Sreekanth, M.J. Reddy, S. Ramalingaiah, and U.V.S. Rao, J. Power Sources 79, 105 (1999).CrossRefGoogle Scholar
  31. 31.
    S.B. Aziz, Iran. Polym. J. 22, 877 (2013).CrossRefGoogle Scholar
  32. 32.
    J.S. Kumar, A.R. Subrahmanyam, M.J. Reddy, and U.V.S. Rao, Mater. Lett. 60, 3346 (2006).CrossRefGoogle Scholar
  33. 33.
    C.O. Avellaneda, D.F. Vieira, A. Al-Kahlout, E.R. Leite, A. Pawlicka, and M.A. Aegerter, Electrochim. Acta 53, 1648 (2007).CrossRefGoogle Scholar
  34. 34.
    J.J. de Jonge, A. van Zon, and S.W. de Leeuw, Solid State Ion. 147, 349 (2002).CrossRefGoogle Scholar
  35. 35.
    S.B. Aziz and Z.H.Z. Abidin, J. Appl. Polym. Sci. 132, 41774 (2015).CrossRefGoogle Scholar
  36. 36.
    M.A. Afifi, M.M. El-Nahass, A.E. Bekheet, and I.T. Zedan, Phys. B 400, 248 (2007).CrossRefGoogle Scholar
  37. 37.
    C. Berthier, W. Gorecki, M. Minier, M.B. Armand, J.M. Chabagno, and P. Rigaud, Solid State Ion. 11, 91 (1983).CrossRefGoogle Scholar
  38. 38.
    S.B. Aziz, O.G. Abdullah, M.A. Rasheed, and H.M. Ahmed, Polymers 9, 187 (2017).CrossRefGoogle Scholar
  39. 39.
    S. Hong, C.K. Kim, and Y.S. Kang, Macromolecules 33, 7918 (2000).CrossRefGoogle Scholar
  40. 40.
    S. Lee, K.H. Yoon, M. Song, H. Peng, K.A. Page, C.L. Soles, and D.Y. Yoon, Chem. Mater. 24, 115 (2012).CrossRefGoogle Scholar
  41. 41.
    B. Angadi, P. Victor, V.M. Jali, M.T. Lagare, R. Kumar, and S.B. Krupanidhi, Mater. Sci. Eng. B 100, 93 (2003).CrossRefGoogle Scholar
  42. 42.
    S.B. Aziz, O.G. Abdullah, and M.A. Rasheed, J. Mater. Sci. Mater. Electron. (2017).  https://doi.org/10.1007/s10854-017-7117-x.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Shujahadeen B. Aziz
    • 1
    • 2
  • Omed Gh. Abdullah
    • 1
    • 2
  • Sarkawt A. Hussein
    • 1
    • 3
  1. 1.Advanced Polymeric Materials Research Laboratory, Department of Physics, College of ScienceUniversity of SulaimaniSulaimaniIraq
  2. 2.Komar Research Center (KRC)Komar University of Science and TechnologySulaimaniIraq
  3. 3.Charmo Research CenterCharmo UniversitySulaimaniIraq

Personalised recommendations