Journal of Electronic Materials

, Volume 48, Issue 3, pp 1679–1685 | Cite as

Effects of GaAs Surface Treatment Processes on Photocurrent Properties of Cs/p-GaAs (001) Fabricated Using a MOCVD–NEA Multichamber System

  • Shingo FuchiEmail author
  • Takayoshi Sato
  • Mikiya Idei
  • Yuuki Akiyama
  • Yasushi Nanai


The effects of surface treatment processes of p-GaAs (001) on the photocurrent properties of Cs/p-GaAs (001) obtained during Cs evaporation have been investigated using a metal–organic chemical vapor deposition (MOCVD)–negative electron affinity (NEA) multichamber system comprising an MOCVD chamber, load–lock chamber, and NEA surface-activation chamber. Samples were transferred from the MOCVD chamber to the NEA surface-activation chamber without air exposure. Moreover, the air exposure time before Cs evaporation was controlled by opening the load–lock chamber. Almost the same peak photocurrents were observed for samples fabricated using only tertiarybutylarsine or H2 supply after thermal cleaning of the p-GaAs substrate. However, tertiarybutylphosphine supply after thermal cleaning of the p-GaAs substrate degraded its surface morphology and decreased its peak photocurrent. The peak photocurrent decreased monotonically with lengthening air exposure time. Moreover, the start time of the rise in photocurrent was delayed monotonically with lengthening air exposure time. These experimental results reveal that the surface treatment process of p-GaAs (001) applied before Cs evaporation is an important factor controlling the photocurrent properties.


NEA photocathode GaAs MOCVD multichamber system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported in part by SENTAN-JST and the Aoyama Gakuin University-Supported ‘‘Early Eagle Program.’’ The authors thank Associate Prof. Tomohiro Nishitani for fruitful discussion on the photocurrent measurements.


  1. 1.
    T. Siggins, C. Sinclair, C. Bohn, D. Bullard, D. Douglas, A. Grippo, J. Gubeli, G.A. Krafft, and B. Yunn, Nucl. Instrum. Methods Phys. Res. Sect. A 475, 549 (2001).CrossRefGoogle Scholar
  2. 2.
    C.K. Sinclair, Nucl. Instrum. Methods Phys. Res. Sect. A 557, 69 (2006).CrossRefGoogle Scholar
  3. 3.
    M. Suzuki, M. Hashimoto, T. Yasue, T. Koshikawa, Y. Nakagawa, T. Konomi, A. Mano, N. Yamamoto, M. Kuwahara, M. Yamamoto, S. Okumi, T. Nakanishi, X.G. Jin, T. Ujihara, Y. Takeda, T. Kohashi, T. Ohshima, T. Saka, T. Kato, and H. Horinaka, Appl. Phys. Express 3, 026601 (2010).CrossRefGoogle Scholar
  4. 4.
    M. Kuwahara, S. Kusunoki, X.G. Jin, T. Nakanishi, Y. Takeda, K. Saitoh, T. Ujihara, H. Asano, and N. Tanaka, Appl. Phys. Lett. 101, 033102 (2012).CrossRefGoogle Scholar
  5. 5.
    Y. Honda, S. Matsuba, X.G. Jin, T. Miyajima, M. Yamamoto, T. Uchiyama, M. Kuwahara, and Y. Takeda, Jpn. J. Appl. Phys. 52, 086401 (2013).CrossRefGoogle Scholar
  6. 6.
    B.M. Dunham and L.S. Cardman, PAC 95/IUPAP 2 (1996), p. 1030Google Scholar
  7. 7.
    X.G. Jin, M. Yamamoto, T. Miyajima, Y. Honda, T. Uchiyama, M. Tabuchi, and Y. Takeda, J. Appl. Phys. 116, 064501 (2014).CrossRefGoogle Scholar
  8. 8.
    D.T. Pierce, R.J. Celotta, G.-C. Wang, W.N. Unertl, A. Galejs, C.E. Kuyatt, and S.R. Mielczarek, Rev. Sci. Instrum. 51, 478 (1980).CrossRefGoogle Scholar
  9. 9.
    T. Nakanishi, H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, S. Nakamura, T. Saka, and M. Tsubata, Phys. Lett. A 158, 345 (1991).CrossRefGoogle Scholar
  10. 10.
    T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, Jpn. J. Appl. Phys. 48, 06FF02 (2009).CrossRefGoogle Scholar
  11. 11.
    X.G. Jin, B. Ozdol, M. Yamamoto, A. Mano, N. Yamamoto, and Y. Takeda, Appl. Phys. Lett. 105, 203509 (2014).CrossRefGoogle Scholar
  12. 12.
    K. Aulenbacher, J. Schuler, and D.V. Harrach, J. Appl. Phys. 92, 7536 (2002).CrossRefGoogle Scholar
  13. 13.
    T. Nishitani, T. Maekawa, M. Tabuchi, T. Meguro, Y. Honda, and H. Amano, in Proceedings of SPIE 9363, 93630T (2015), p. 1Google Scholar
  14. 14.
    L.I. Antonova and V.P. Denissov, Appl. Surf. Sci. 111, 237 (1997).CrossRefGoogle Scholar
  15. 15.
    S. Uchiyama, Y. Takagi, M. Niigaki, H. Kan, and H. Kondoh, Appl. Phys. Lett. 86, 103511 (2005).CrossRefGoogle Scholar
  16. 16.
    D.A. Orlov, C. Krantz, A. Wolf, A.S. Jaroshevich, S.N. Kosolobov, H.E. Scheibler, and A.S. Terekhov, J. Appl. Phys. 106, 54907 (2009).CrossRefGoogle Scholar
  17. 17.
    J.J. Scheer and J. van Laar, Solid State Commun. 3, 189 (1965).CrossRefGoogle Scholar
  18. 18.
    A.A. Turnbull and G.B. Evans, Br. J. Appl. Phys. 1, 155 (1968).Google Scholar
  19. 19.
    K. Hayase, T. Nishitani, and T. Meguro, IEEJ Trans. Electron. Inf. Syst. 132, 1261 (2012).Google Scholar
  20. 20.
    K.A. Elamrawi, M.A. Hafez, and H.E. Elsayed-Ali, J. Appl. Phys. 84, 4568 (1998).CrossRefGoogle Scholar
  21. 21.
    B.F. Williams, Appl. Phys. Lett. 14, 273 (1969).CrossRefGoogle Scholar
  22. 22.
    X.G. Jin, Y. Takeda, and S. Fuchi, Jpn. J. Appl. Phys. 56, 036701 (2017).CrossRefGoogle Scholar
  23. 23.
    T. Wada, T. Nitta, T. Nomura, M. Miyao, and M. Hagino, Jpn. J. Appl. Phys. 29, 2087 (1990).CrossRefGoogle Scholar
  24. 24.
    J. Grames, P. Adderley, J. Brittian, D. Charles, J. Clark, J. Hansknecht, M. Poelker, M. Stutzman, and K. Surles-Law, in Proceedings of 2005 Particle Accelerator Conference (2005), p. 2875Google Scholar
  25. 25.
    N. Chanlek, J.D. Herbert, R.M. Jones, L.B. Jones, K.J. Middleman, and B.L. Militsyn, J. Phys. D 47, 055110 (2014).CrossRefGoogle Scholar
  26. 26.
    Y. Inagaki, K. Hayase, R. Chiba, H. Iijima, and T. Meguro, IEICE Trans. Electron. E99, 371 (2016).CrossRefGoogle Scholar
  27. 27.
    M.G. Burt and V. Heine, J. Phys. C: Solid State Phys. 11, 961 (1978).CrossRefGoogle Scholar
  28. 28.
    A.H. Sommer, H.H. Whitaker, and B.F. Williams, J. Appl. Phys. 17, 273 (1970).Google Scholar
  29. 29.
    D.G. Fisher, R.E. Enstrom, J.S. Escher, and B.F. Williams, J. Appl. Phys. 43, 3815 (1972).CrossRefGoogle Scholar
  30. 30.
    C.Y. Su, W.E. Spicer, and I. Lindau, J. Appl. Phys. 54, 1413 (1983).CrossRefGoogle Scholar
  31. 31.
    M. Hirao, D. Yamanaka, T. Yazaki, J. Osako, H. Iijima, T. Shiokawa, H. Akimoto, and T. Meguro, IEICE Trans. Electron. E99, 376 (2016).CrossRefGoogle Scholar
  32. 32.
    K. Hayase, T. Nishitani, K. Suzuki, H. Imai, J. Hasegawa, D. Namba, and T. Meguro, Jpn. J. Appl. Phys. 52, 06GG05 (2013).CrossRefGoogle Scholar
  33. 33.
    K. Tsubota, M. Tabuchi, T. Nishitani, A. Era, and Y. Takeda, J. Phys. Conf. Ser. 430, 012079 (2013).CrossRefGoogle Scholar
  34. 34.
    A. Era, M. Tabuchi, T. Nishitani, and Y. Takedaa, J. Phys. Conf. Ser. 298, 012012 (2011).CrossRefGoogle Scholar
  35. 35.
    S. Fuchi, S. Miyake, S. Kawamura, W.S. Lee, T. Ujihara, and Y. Takeda, J. Cryst. Growth 310, 2239 (2008).CrossRefGoogle Scholar
  36. 36.
    T. Nishitani, M. Tabuchi, H. Amano, T. Maekawa, M. Kuwahara, and T. Meguro, J. Vac. Sci. Technol. B 32, 06F901 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Electronics, College of Science and EngineeringAoyama Gakuin UniversitySagamihara-shiJapan

Personalised recommendations