Advertisement

Effect of Rare Earth Metals on the Properties of Zn-20Sn High-Temperature Lead-Free Solder

  • Jun Tian
  • Chunfu Hong
  • Lihua Hong
  • Xiaohui Yan
  • Pinqiang Dai
Article
  • 5 Downloads

Abstract

Cerium–lanthanum mixed rare earth (RE) (0.5 wt.%) was added to Zn-20Sn high-temperature lead-free solder to study the effect of RE on the solder properties. The Zn-20Sn-0.5RE solder has a better corrosion resistance than that of Zn-20Sn alloy. RE addition increases the γ-Cu5Zn8 layer thickness, promotes growth of a ε-CuZn5 layer shaped like bamboo shoots, and increases the roughness of the ε-CuZn5 layer, which increases the shear strength of the solder joints. Compared with the Zn-20Sn alloy, the creep resistance of the Zn-20Sn-0.5RE solder was improved after soldering. The indentation hardness increases in an order of Zn-20Sn-0.5RE solder, Zn-20Sn solder, ε-CuZn5 layer, and γ-Cu5Zn8 layer.

Keywords

Zn-20Sn alloy high-temperature lead-free solder corrosion resistance interfacial reaction shear strength nano-indentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the scientific and technological project in Fujian Province (2015H0008).

References

  1. 1.
    S. Menon, E. George, M. Osterman, and M. Pecht, J. Mater. Sci. Mater. Electron. 26, 4021 (2015).CrossRefGoogle Scholar
  2. 2.
    J.E. Lee, K.S. Kim, K. Suganuma, J. Takenaka, and K. Hagio, Mater. Trans. 46, 2413 (2005).CrossRefGoogle Scholar
  3. 3.
    S. Kim, K.S. Kim, K. Suganuma, and G. Izuta, J. Electron. Mater. 38, 873 (2009).CrossRefGoogle Scholar
  4. 4.
    K. Suganuma, S.J. Kim, and K.S. Kim, JOM 61, 64 (2009).CrossRefGoogle Scholar
  5. 5.
    W.L.R. Santos, C. Brito, J.M.V. Quaresma, J.E. Spinelli, and A. Garcia, Mater. Sci. Eng., B 182, 29 (2014).CrossRefGoogle Scholar
  6. 6.
    C.W. Liu and K.L. Lin, J. Electron. Mater. 43, 4502 (2014).CrossRefGoogle Scholar
  7. 7.
    C.M.T. Law, C.M.L. Wu, D.Q. Yu, L. Wang, and J.K.L. Lai, J. Electron. Mater. 35, 89 (2006).CrossRefGoogle Scholar
  8. 8.
    J. Tian, P. Dai, and X. Li, J. Mater. Sci. Mater. Electron. 28, 17185 (2017).CrossRefGoogle Scholar
  9. 9.
    D.Q. Yu and L. Wang, J. Alloys Compd. 458, 542 (2008).CrossRefGoogle Scholar
  10. 10.
    M.K. Choi, C.Y. Lee, C.J. Shur, and J.P. Jung, J. Electron. Manuf. 8, 235 (1998).CrossRefGoogle Scholar
  11. 11.
    F. Rosalbino, E. Angelini, D. Macciò, A. Saccone, and S. Delfino, Electrochim. Acta 52, 7107 (2007).CrossRefGoogle Scholar
  12. 12.
    D. Ma, W.D. Wang, and S.K. Lahiri, J. Appl. Phys. 91, 3312 (2002).CrossRefGoogle Scholar
  13. 13.
    J.K. Shang and D. Yao, J. Electron. Packag. 118, 170 (1996).CrossRefGoogle Scholar
  14. 14.
    S. Kim, K.S. Kim, S.S. Kim, and K. Suganuma, J. Electron. Mater. 38, 266 (2009).CrossRefGoogle Scholar
  15. 15.
    B. Lao, S. Gao, and Q. Zhang, Acta Phys. Chim. Sin. 17, 453 (2001).Google Scholar
  16. 16.
    X. Deng, N. Chawla, K.K. Chawla, and M. Koopman, Acta Mater. 52, 4291 (2004).CrossRefGoogle Scholar
  17. 17.
    G.Y. Jang, J.W. Lee, and J.G. Duh, J. Electron. Mater. 33, 1103 (2004).CrossRefGoogle Scholar
  18. 18.
    A.R. Geranmayeh and R. Mahmudi, J. Electron. Mater. 34, 1002 (2005).CrossRefGoogle Scholar
  19. 19.
    J.M. Song, M.J. Lin, K.H. Hsieh, T.Y. Pai, Y.S. Lai, and Y.T. Chiu, J. Electron. Mater. 42, 2813 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Jun Tian
    • 1
    • 2
    • 3
  • Chunfu Hong
    • 2
    • 3
  • Lihua Hong
    • 2
    • 3
  • Xiaohui Yan
    • 2
    • 3
  • Pinqiang Dai
    • 1
    • 2
    • 3
  1. 1.School of Materials Science and EngineeringFuzhou UniversityFuzhouChina
  2. 2.School of Materials Science and EngineeringFujian University of TechnologyFuzhouChina
  3. 3.Fujian Provincial Key Laboratory of Advanced Materials Processing and ApplicationFuzhouChina

Personalised recommendations