Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1686–1693 | Cite as

Fascinating Physical Properties of 2D Hybrid Perovskite [(NH3)(CH2)7(NH3)]CuClxBr4−x, x = 0, 2 and 4

  • Seham K. Abdel-AalEmail author
  • Ahmed S. Abdel-RahmanEmail author
Article
  • 71 Downloads

Abstract

The 2-D organic–inorganic hybrid perovskites of the formula [(NH3)(CH2)7(NH3)]CuClxBr4−x, x = 0, 2 and 4 were prepared by slow evaporation from ethanolic solution in stoichiometric ratio 1:1 (organic/inorganic). Microchemical analysis and x-ray diffraction (XRD) were used to confirm the formation of the presently investigated hybrids. Differential scanning calorimetry (DSC) indicated order–disorder transitions at T1 = 357 K, T2 = 388 K, and T3 = 398 K for x = 0, 2 and 4 of the three heptain diammonium Cu hybrid perovskites, respectively. These transitions are in good agreement with the electrical permittivity results at different frequencies and temperatures. Optical properties and estimated band gap energy reveal that the band gap energy decreases sharply with replacement of Cl ion by Br ion where the band gap energy of [(NH3)(CH2)7(NH3)]CuBr4, x = 0 (denoted 2C7CuBr) is 1.6 eV (brown color) and for [(NH3)(CH2)7(NH3)]CuCl4, x = 4 (denoted 2C7CuCl) is 2.6 eV (yellow color). The differential magnetic susceptibility of 2C7CuBr in the temperature range 80–300 K indicates the effective magnetic moment μeff = 2.05 BM.

Keywords

2D hybrid perovskite optical properties of halide perovskite phase transition magnetic properties of Cu perovskite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to the financial Support of Cairo University, Electromagnetic Lab. Members (Mohga F., Shimaa S., Ahmed K.), and Polymer Technology Lab. Members (Amin S., Hamdy O.). This work has been done at the Physics Department, Faculty of Science, Cairo University. Optical properties were measured at Central Metallurgical Research and Development Institute, Tibeen, Egypt.

References

  1. 1.
    K. Tichý, J. Benes, W. Hälg, and H. Arend, Acta Cryst. B34, 2970 (1978).CrossRefGoogle Scholar
  2. 2.
    K. Tichý, J. Benes, R. Kind, and H. Arend, Acta Cryst. B36, 1355 (1980).CrossRefGoogle Scholar
  3. 3.
    A. Kallel, J. Fail, H. Fuess, and A. Daoud, Acta Cryst. B36, 2788 (1980).CrossRefGoogle Scholar
  4. 4.
    J.K. Garland, K. Emerson, and M.R. Pressprich, Acta Cryst. C46, 1603 (1990).Google Scholar
  5. 5.
    N. Guo, Y.-H. Lin, G.-F. Zeng, and S.-Q. Xi, Acta Cryst. C48, 542 (1992).Google Scholar
  6. 6.
    M. Khechoubi, A. Bendani, N.B. Chanh, C. Courseille, R. Duplessix, and M. Couzi, J. Phys. Chem. Solids 55, 1277 (1994).CrossRefGoogle Scholar
  7. 7.
    C. Courseille, N.B. Chanh, Th Maris, A. Daoud, Y. Abid, and M. Laguerre, Phys. Stat. Sol. A143, 203 (1994).CrossRefGoogle Scholar
  8. 8.
    T. Maris, G. Bravic, N.B. Chanh, J.M. Leger, J.C. Bissey, A. Villesuzanne, R. Zouari, and A. Daoud, J. Phys. Chem. Solids 57, 1963 (1996).CrossRefGoogle Scholar
  9. 9.
    J.J. Criado, A. Jiménez-Sánchez, F.H. Cano, R. Sáez-Puche, and E. Rodríguez-Fernández, Acta Cryst. B55, 947 (1999).CrossRefGoogle Scholar
  10. 10.
    J. Guan, Z. Tang, and A.M. Guloy, Chem. Commun. 18, 1833 (1999).CrossRefGoogle Scholar
  11. 11.
    A.H. Mahmoudkhani and V. Langer, Acta Cryst. E58, m592 (2002).Google Scholar
  12. 12.
    M.F. Mostafa and A. Hassen, Phase Trans. 79, 305 (2006).CrossRefGoogle Scholar
  13. 13.
    A. Lamhamdi, E. Mejdoubi, K. Fejfarová, M. Dusek, and B. El Bali, Acta Cryst. E65, m215 (2009).Google Scholar
  14. 14.
    K. Pradeesh, G.S. Yadav, M. Singh, and G. Vijaya Prakash, Mat. Chem. Phys. 124, 44 (2010).CrossRefGoogle Scholar
  15. 15.
    S.K. Abdel-Aal, G. Kocher-Oberlehner, A. Ionov, and R.N. Mozhchil, Appl. Phys. A 123, 531 (2017).CrossRefGoogle Scholar
  16. 16.
    M.F. Mostafa, S.K. Abdel-Aal, and A.K. Tammam, Ind. J. Phys. 88, 49 (2014).CrossRefGoogle Scholar
  17. 17.
    S.K. Abdel-Aal, Solid State Ionics 303, 29 (2017).CrossRefGoogle Scholar
  18. 18.
    M.F. Mostafa, S.S. El-khiyami, and S.K. Abdel-Aal, J. Mol. Struct. 1127, 59 (2017).CrossRefGoogle Scholar
  19. 19.
    S.K. Abdel-Aal and A.S. Abdel-Rahman, J. Cryst. Growth 457, 282 (2017).CrossRefGoogle Scholar
  20. 20.
    S. González-Carrero, R.E. Galian, and J. Pérez-Prieto, Part. Syst. Charact. 32, 709 (2015).CrossRefGoogle Scholar
  21. 21.
    B. Kundys, A. Lappas, M. Viret, V. Kapustianyk, V. Rudyk, S. Semak, Ch Simon, and I. Bakaimi, Phys. Rev. B 81, 224434 (2010).CrossRefGoogle Scholar
  22. 22.
    D.B. Mitzi, K. Chondroudis, and C.R. Kagan, IBM J. Res. Dev. 45, 29 (2001).CrossRefGoogle Scholar
  23. 23.
    Z. Cheng and J. Lin, Cryst. Eng. Commun. 12, 2646 (2010).CrossRefGoogle Scholar
  24. 24.
    D.W. Phelps, D.B. Losee, W.E. Hatfield, and D.J. Hodgson, Inorg. Chem. 15, 3147 (1976).CrossRefGoogle Scholar
  25. 25.
    K. Halvorson and R.D. Willett, Acta Cryst. C44, 2071 (1988).Google Scholar
  26. 26.
    M.F. Mostafa and S.A. El-Hakim, Phase Trans. 76, 587 (2003).CrossRefGoogle Scholar
  27. 27.
    M.F. Mostafa and A.A.A. Youssef, Z. Naturforsch. A59, 35 (2004).Google Scholar
  28. 28.
    M.F. Mostafa, A.A.A. Youssef, S.S. Montasser, and S.S. Khyami, Z. Naturforsch. A60, 837 (2005).Google Scholar
  29. 29.
    X. Pan, G. Wu, M. Wang, and H. Chen, J. Zhejiang Univ. Sci. A 10, 710 (2009).CrossRefGoogle Scholar
  30. 30.
    S.K. Abdel-Aal, A.S. Abdel-Rahman, G. Kocher-Oberlehner, A. Ionov, and R.N. Mozhchil, Acta Cryst. A73, c1116 (2017).Google Scholar
  31. 31.
    K. Elmebrouki, S. Tamsamani, J. Aazza, M. Khechoubi, and A. Khmou, J. Asian Sci. Res. 1, 216 (2011).Google Scholar
  32. 32.
    P. Mondal, S.K. Abdel-Aal, D. Das, and S.M. Islam, Catal. Lett. 147, 2332 (2017).CrossRefGoogle Scholar
  33. 33.
    M.F. Mostafa, S.S. ElKhiyami, and S.A. Alal, Mat. Chem. Phys. 199, 454 (2017).CrossRefGoogle Scholar
  34. 34.
    S.K. Abdel-Aal and A.S. Abdel-Rahman, The Cambridge Crystallographic Data Centre, CCDC 1401387 (2015).Google Scholar
  35. 35.
    B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, 3rd ed. (New York: Prentice-Hall, 2001), p. 167.Google Scholar
  36. 36.
    T. Maris, N.B. Chanh, J.-C. Bissey, N. Filloleau, S. Flandrois, R. Zouari, and A. Daoud, Phase Trans. 66, 81 (1998).CrossRefGoogle Scholar
  37. 37.
    R. Kind, S. Plesko, P. Gunter, J. Roos, and J. Fousek, Phys. Rev. B 23, 5301 (1981).CrossRefGoogle Scholar
  38. 38.
    A.A. Radhakrishnan and B.B. Beena, Ind. J. Adv. Chem. Sci. 2, 158 (2014).Google Scholar
  39. 39.
    J. Essic and R. Mather, Am. J. Phys. 61, 646 (1993).CrossRefGoogle Scholar
  40. 40.
    R. Williardson and A. Beer, Optical Properties of III–V Compounds (New York: Academic, 1967), p. 318.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Egypt Nano-Technology Center EGNCCairo University Campus in Shikh Zayed CityGizaEgypt

Personalised recommendations