Upgraded CdZnTe Based on the Infrared Attenuation Spectrum
- 6 Downloads
Abstract
According to the infrared attenuation spectrum, we can know the conduction type and major point defect of CdZnTe crystals. Based on point defect modelling, an appropriate modus of atmosphere annealing was described in this paper. In this paper, annealing with Cd pressure control technology was used to upgrade p-CdZnTe and n-CdZnTe, respectively. Characterizations reveal that the optical and electrical performance of the CZT crystals is patently improved after annealing. Employment of the infrared attenuation spectrum as the annealing guideline has been verified to be feasible and effectual in this paper.
Keywords
CdZnTe infrared attenuation spectrum free carrier absorption atmosphere annealingPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgment
This work was financially supported by the National Natural Science Foundation of China (Nos. 11675099, 11775139 and 11505109), Innovation Program of Shanghai Municipal Education Commission, China (No. 12ZZ096), and the Shanghai Leading Academic Discipline Project of Shanghai Municipal Education Commission (No. S30107).
References
- 1.Y.P. Ling, J.H. Min, X.Y. Liang, J.J. Zhang, L.Q. Yang, Y. Zhang, M. Li, Z.X. Liu, and L.J. Wang, J. Appl. Phys. 121, 034502 (2017).CrossRefGoogle Scholar
- 2.S.W. Sun, C.F. Liu, W.Z. Fang, and J.R. Yang, Laser Infrared 37, 924 (2007).Google Scholar
- 3.S. Sen and J.E. Stannard, Prog. Cryst. Growth Charact. Mater. 29, 253 (1994).CrossRefGoogle Scholar
- 4.A.K. Singh and R.C. Sharma, CALPHAD. 16, 161 (1992).CrossRefGoogle Scholar
- 5.B. Li, J. Zhu, X. Zhang, and J. Chu, J. Cryst. Growth 181, 204 (1997).CrossRefGoogle Scholar
- 6.J. Franc, R. Grill, L. Turjanska, P. Höschl, E. Belas, and P. Moravec, J. Appl. Phys. 89, 786 (2001).CrossRefGoogle Scholar
- 7.M. Li, J. Min, X. Liang, S. Sun, J. Zhang, Y. Zhang, D.L. Zhang, J.X. Zhang, Z.X. Liu, and L.J. Wang, Mater. Sci. Semicond. Process. 72, 1 (2017).CrossRefGoogle Scholar
- 8.R.D.S. Yadava, B.S. Sundersheshu, M. Anandan, R.K. Bagai, and W.N. Borle, J. Electron. Mater. 23, 1349 (1994).CrossRefGoogle Scholar
- 9.S. Sen, D.R. Rhiger, C.R. Curtis, M.H. Kalisher, H.L. Hettich, and M.C. Currie, J. Electron. Mater. 30, 611 (2001).CrossRefGoogle Scholar
- 10.A.H. Kahn, Phys. Rev. 97, 1647 (1955).CrossRefGoogle Scholar
- 11.A.J. Syllaios, P.K.K. Liao, and B.E. Dean, Infrared Detectors: State of the Art II (vol. 2274). International Society for Optics and Photonics (1994).Google Scholar
- 12.U. Becker, P. Rudolph, R. Boyn, M. Wienecke, and I. Utke, Phys. Status Solidi 120, 653 (2010).CrossRefGoogle Scholar
- 13.J. Franc, R. Grill, P. Hlídek, E. Belas, L. Turjanska, P. Höschl, I. Turkevych, A.L. Toth, P. Moravec, and H. Sitter, Semicond. Sci. Technol. 16, 514 (2001).CrossRefGoogle Scholar
- 14.M.A. Berding, S.M. Van, and A. Sher, Phys. Rev. B 50, 1519 (1994).CrossRefGoogle Scholar
- 15.J.H. Greenberg, J. Cryst. Growth 197, 406 (1999).CrossRefGoogle Scholar
- 16.P. Rudolph, in Recent Development of Bulk Crystal Growth, ed. by M. Milssiki (Trivandrum, India: Research Signpost, 1998), p. 127.Google Scholar