Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1511–1521 | Cite as

Conjugate Electrospinning Construction of Microyarns with Synchronous Color-Tuned Photoluminescence and Tunable Electrical Conductivity

  • Libing Fan
  • Qianli MaEmail author
  • Jiao Tian
  • Dan Li
  • Xue Xi
  • Xiangting DongEmail author
  • Wensheng Yu
  • Jinxian Wang
  • Guixia Liu
Article
  • 24 Downloads

Abstract

Here, we report a strategy for constructing {[Tb(BA)3phen + Eu(BA)3phen]/PAN}//[PANI/PAN] (BA = benzoic acid, phen = phenanthroline, PANI = polyaniline, PAN = polyacrylonitrile) hetero-structured microyarns simultaneously endowed with the bi-functionality of tunable luminescence colors and electrical conductivity by using a conjugate electrospinning technique. The obtained hetero-structured microyarns are composed of [Tb(BA)3phen + Eu(BA)3phen]/PAN luminescent nanofibers and PANI/PAN electrically conductive nanofibers, realizing efficient separation of dark-colored PANI from rare earth (RE) complexes, and thus the enhanced luminescent performance is obtained. Under 276-nm ultraviolet light excitation, the emitting light color of the hetero-structured microyarns can be adjusted in a broad range of green–yellow–red by changing the proportion of RE complexes. The electrical conductivity of the hetero-structured microyarns also can be modulated via tuning the percentages of PANI. These hetero-structured microyarns, by virtue of their luminescent properties and electrical performance, are expected to be applied in multifunctional applications.

Keywords

Microyarn conjugate electrospinning photoluminescence electrical properties 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    J. Chen and Z.L. Wang, Joule 1, 480 (2017).CrossRefGoogle Scholar
  2. 2.
    N.N. Zhang, J. Chen, Y. Huang, W.W. Guo, J. Yang, J. Du, X. Fan, and C.Y. Tao, Adv. Mater. 28, 263 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Chen, Y. Huang, N.N. Zhang, H.Y. Zou, R.Y. Liu, C.Y. Tao, X. Fan, and Z.L. Wang, Nat. Energy 1, 16138 (2016).CrossRefGoogle Scholar
  4. 4.
    N.N. Zhang, C.Y. Tao, X. Fan, and J. Chen, J. Mater. Res. 32, 1628 (2017).CrossRefGoogle Scholar
  5. 5.
    Y.C. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.C. Hsu, L.L. Cai, B.F. Liu, Y.Y. Zhu, G.M. Zhou, D.S. Wu, H.R. Lee, S.H. Fan, and Y. Cui, Nat. Sustain. 1, 105 (2018).CrossRefGoogle Scholar
  6. 6.
    Z.M. Lin, J. Yang, X.S. Li, Y.F. Wu, W. Wei, J. Liu, J. Chen, and J. Yang, Adv. Funct. Mater. 28, 1704112 (2018).CrossRefGoogle Scholar
  7. 7.
    L.L. Cai, A.Y. Song, P.I. Wu, P.C. Hsu, Y.C. Peng, J. Chen, C. Liu, P.B. Catrysse, Y.Y. Liu, A.K. Yang, C.X. Zhou, C.Y. Zhou, S.H. Fan, and Y. Cui, Nat. Commun. 8, 496 (2017).CrossRefGoogle Scholar
  8. 8.
    Z.M. Lin, J. Chen, and J. Yang, J. Nanomater. 2016, 56516613 (2016).Google Scholar
  9. 9.
    Z.L. Li, J. Chen, J.J. Zhou, L. Zheng, K.C. Pradel, X. Fan, H.Y. Guo, Z. Wen, M.H. Yeh, C.W. Yu, and Z.L. Wang, Nano Energy 22, 548 (2016).CrossRefGoogle Scholar
  10. 10.
    R.Y. Liu, X. Kuang, J.N. Deng, Y.C. Wang, A.C. Wang, W.B. Ding, Y.C. Lai, J. Chen, P.H. Wang, Z.Q. Lin, H.J. Qi, B.Q. Sun, and Z.L. Wang, Adv. Mater. 30, 1705195 (2018).CrossRefGoogle Scholar
  11. 11.
    G. Zhu, J. Chen, T.J. Zhang, Q.S. Jing, and Z.L. Wang, Nat. Commun. 5, 3426 (2014).CrossRefGoogle Scholar
  12. 12.
    J. Chen, G. Zhu, W.Q. Yang, Q.S. Jing, P. Bai, Y. Yang, and T.C. Hou, Adv. Mater. 25, 6094 (2013).CrossRefGoogle Scholar
  13. 13.
    J. Chen, J. Yang, Z.L. Li, X. Fan, Y.L. Zi, Q.S. Jing, H.Y. Guo, Z. Wen, K.C. Pradel, S.M. Niu, and Z.L. Wang, ACS Nano 9, 3324 (2015).CrossRefGoogle Scholar
  14. 14.
    Z.L. Li, J. Chen, H.Y. Guo, X. Fan, Z. Wen, M.H. Yeh, C.W. Yu, X. Cao, and Z.L. Wang, Adv. Mater. 28, 2983 (2016).CrossRefGoogle Scholar
  15. 15.
    Y. Wu, Q.S. Jing, J. Chen, P. Bai, J.J. Bai, G. Zhu, Y.J. Su, and Z.L. Wang, Adv. Funct. Mater. 25, 2166 (2015).CrossRefGoogle Scholar
  16. 16.
    J. Chen, J. Yang, H.Y. Guo, Z.L. Li, L. Zheng, Y.J. Su, Z. Wen, X. Fan, and Z.L. Wang, ACS Nano 9, 12334 (2015).CrossRefGoogle Scholar
  17. 17.
    Z.M. Lin, J. Chen, X.S. Li, Z.H. Zhou, K.Y. Meng, W. Wei, J. Yang, and Z.L. Wang, ACS Nano 11, 8830 (2017).CrossRefGoogle Scholar
  18. 18.
    S.Y. Kuang, J. Chen, X.B. Cheng, G. Zhu, and Z.L. Wang, Nano Energy 17, 10 (2015).CrossRefGoogle Scholar
  19. 19.
    J. Chen, G. Zhu, J. Yang, Q.S. Jing, P. Bai, W.Q. Yang, X.W. Qi, Y.J. Su, and Z.L. Wang, ACS Nano 9, 105 (2015).CrossRefGoogle Scholar
  20. 20.
    L. Zheng, G. Cheng, J. Chen, L. Lin, J. Wang, Y.S. Liu, H.X. Li, and Z.L. Wang, Adv. Energy Mater. 5, 1501152 (2015).CrossRefGoogle Scholar
  21. 21.
    Y. Lu and S. Ozcan, Nano Today 10, 417 (2015).CrossRefGoogle Scholar
  22. 22.
    C.M. Park, K.H. Chu, J. Heo, N. Her, M. Jang, A. Son, and Y. Yoon, J. Hazard. Mater. 309, 133 (2016).CrossRefGoogle Scholar
  23. 23.
    K. Chen, L. Ma, J.H. Wang, Z.Q. Cheng, D.J. Yang, Y.Y. Li, S.J. Ding, L. Zhou, and Q.Q. Wang, RSC Adv. 7, 26097 (2017).CrossRefGoogle Scholar
  24. 24.
    L. Ma, K. Chen, F. Nan, J.H. Wang, D.J. Yang, L. Zhou, and Q.Q. Wang, Adv. Funct. Mater. 26, 6076 (2016).CrossRefGoogle Scholar
  25. 25.
    J. Tian, Q.L. Ma, X.T. Dong, W.S. Yu, M. Yang, Y. Yang, J.X. Wang, and G.X. Liu, RSC Adv. 6, 36180 (2016).CrossRefGoogle Scholar
  26. 26.
    K. Lun, Q.L. Ma, X.T. Dong, W.S. Yu, J.X. Wang, and G.X. Liu, J. Mater. Sci. Mater. Electron. 25, 5395 (2014).CrossRefGoogle Scholar
  27. 27.
    M. Chen, J.H. Wang, Z.J. Luo, Z.Q. Cheng, Y.F. Zhang, X.F. Yu, L. Zhou, and Q.Q. Wang, RSC Adv. 6, 9612 (2016).CrossRefGoogle Scholar
  28. 28.
    G.H. Du, P. Liu, W.W. Guo, Y.B. Han, J. Zhang, Z.W. Ma, J.B. Han, Z.L. Liu, and K.L. Yao, J. Mater. Chem. C 1, 7608 (2013).CrossRefGoogle Scholar
  29. 29.
    F. Wang and X.G. Liu, Acc. Chem. Res. 47, 1378 (2014).CrossRefGoogle Scholar
  30. 30.
    Y. Tian, Y. Wei, Y. Zhao, Z.W. Quan, G.G. Li, and J. Lin, J. Mater. Chem. C 4, 1281 (2016).CrossRefGoogle Scholar
  31. 31.
    J. Jang, J.H. Oh, and G.D. Stucky, Angew. Chem. Int. Ed. 41, 4016 (2002).CrossRefGoogle Scholar
  32. 32.
    P.H. Liu, S.H. Wu, Y. Zhang, H.G. Zhang, and X.H. Qin, Nanomaterials 6, 121 (2016).CrossRefGoogle Scholar
  33. 33.
    A. Jasim, M.W. Ullah, Z.J. Shi, X. Lin, and G. Yang, Carbohydr. Polym. 163, 62 (2017).CrossRefGoogle Scholar
  34. 34.
    P.P. Yu, X. Zhao, Y.Z. Li, and Q.H. Zhang, Appl. Surf. Sci. 393, 37 (2017).CrossRefGoogle Scholar
  35. 35.
    P. Bandyopadhyay, T. Kuila, J. Balamurugan, T.T. Nguyen, N.H. Kim, and J.H. Lee, Chem. Eng. J. 308, 1174 (2017).CrossRefGoogle Scholar
  36. 36.
    L. Kumar, I. Rawal, A. Kaur, and S. Annapoorni, Sens. Actuator B 240, 408 (2017).CrossRefGoogle Scholar
  37. 37.
    Y.W. Liu, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, and G.X. Liu, Chem. Eng. J. 284, 831 (2016).CrossRefGoogle Scholar
  38. 38.
    D. Li, Q.L. Ma, X. Xi, X.T. Dong, W.S. Yu, J.X. Wang, and G.X. Liu, Chem. Eng. J. 309, 230 (2017).CrossRefGoogle Scholar
  39. 39.
    X.B. Li, Q.L. Ma, J. Tian, X. Xi, D. Li, X.T. Dong, W.S. Yu, X.L. Wang, J.X. Wang, and G.X. Liu, Nanoscale 9, 18918 (2017).CrossRefGoogle Scholar
  40. 40.
    N. Lv, J.L. Zhang, G.M. Li, X. Wang, and J.Z. Ni, J. Phys. Chem. C 121, 11926 (2017).CrossRefGoogle Scholar
  41. 41.
    H.Y. Wang, Y. Wang, Y. Yang, X. Li, and C. Wang, Mater. Res. Bull. 44, 408 (2009).CrossRefGoogle Scholar
  42. 42.
    N. Lv, Z.G. Wang, W.Z. Bi, G.M. Li, J.L. Zhang, and J.Z. Ni, J. Mater. Chem. B 4, 4402 (2016).CrossRefGoogle Scholar
  43. 43.
    N. Lu, C.L. Shao, X.H. Li, F.J. Miao, K.X. Wang, and Y.C. Liu, Appl. Surf. Sci. 391, 668 (2017).CrossRefGoogle Scholar
  44. 44.
    S. Thenmozhi, N. Dharmaraj, K. Kadirvelu, and H.Y. Kim, Mater. Sci. Eng. B 217, 36 (2017).CrossRefGoogle Scholar
  45. 45.
    Z. Aytac, Z.I. Yildiz, F.K. Ayaci-Senirmak, T. Tekinay, and T. Uyar, Food Chem. 231, 192 (2017).CrossRefGoogle Scholar
  46. 46.
    J.J. Xue, J.W. Xie, W.Y. Liu, and Y.N. Xia, Acc. Chem. Res. 50, 1976 (2017).CrossRefGoogle Scholar
  47. 47.
    S.H. Wu, Y. Wang, P.N. Streubel, and B. Duan, Acta Biomater. 62, 102 (2017).CrossRefGoogle Scholar
  48. 48.
    L. Tian, T. Yan, and Z.J. Pan, J. Mater. Sci. 50, 7137 (2015).CrossRefGoogle Scholar
  49. 49.
    U. Ali, H. Niu, A. Abbas, H. Shao, and T. Lin, RSC Adv. 6, 30564 (2016).CrossRefGoogle Scholar
  50. 50.
    C. Yao, X.S. Li, K.G. Neoh, Z.L. Shi, and E.T. Kang, Appl. Surf. Sci. 255, 3854 (2009).CrossRefGoogle Scholar
  51. 51.
    X.Y. Zheng, W. Wang, S. Liu, J.L. Wu, F.F. Li, L. Cao, X.D. Liu, X.M. Mo, and C.Y. Fan, Mater. Sci. Eng. C 58, 1071 (2016).CrossRefGoogle Scholar
  52. 52.
    X.L. Ma, L.Y. Zhang, J. Tan, Y.X. Qin, and H.B. Chen, J. Appl. Polym. Sci. 134, 44820 (2017).Google Scholar
  53. 53.
    X.R. Li, M.Y. Li, J. Sun, Y. Zhuang, J.J. Shi, D.W. Guan, Y.Y. Chen, and J.W. Dai, Small 122, 5009 (2016).CrossRefGoogle Scholar
  54. 54.
    F. Mehrpouya, J. Foroughi, S. Naficy, J. Razal, and M. Naebe, Nanomaterials 7, 293 (2017).CrossRefGoogle Scholar
  55. 55.
    L.B. Fan, Q.L. Ma, J. Tian, D. Li, X. Xi, X.T. Dong, W.S. Yu, J.X. Wang, and G.X. Liu, J. Mater. Sci. 53, 2290 (2018).CrossRefGoogle Scholar
  56. 56.
    D.W. Li, X. Pan, B.B. Sun, T. Wu, W.M. Chen, C. Huang, Q.F. Ke, H.A. Ei-Hamshary, S.S. Al-Deyab, and X.M. Mo, J. Mater. Chem. B 3, 8823 (2015).CrossRefGoogle Scholar
  57. 57.
    S.H. Wu, P.H. Liu, Y. Zhang, H.G. Zhang, and X.H. Qin, Sens. Actuator B 252, 697 (2017).CrossRefGoogle Scholar
  58. 58.
    S.K. Nataraj, K.S. Yang, and T.M. Aminabhavi, Prog. Polym. Sci. 37, 487 (2012).CrossRefGoogle Scholar
  59. 59.
    F.J. Miao, C.L. Shao, X.H. Li, N. Lu, K.X. Wang, X. Zhang, and Y.C. Liu, Electrochim. Acta 176, 293 (2015).CrossRefGoogle Scholar
  60. 60.
    R. Zhao, X. Li, B.L. Sun, H. Ji, and C. Wang, J. Colloid Interface Sci. 487, 297 (2017).CrossRefGoogle Scholar
  61. 61.
    Q. Niu, J. Guo, B. Chen, J. Nie, X. Guo, and G. Ma, Carbon 114, 250 (2017).CrossRefGoogle Scholar
  62. 62.
    Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, and G.X. Liu, Chem. Eng. J. 222, 16 (2013).CrossRefGoogle Scholar
  63. 63.
    Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, and J. Xu, J. Mater. Chem. 22, 14438 (2012).CrossRefGoogle Scholar
  64. 64.
    H. Shao, Q.L. Ma, X.T. Dong, W.S. Yu, M. Yang, Y. Yang, J.X. Wang, and G.X. Liu, Sci. Rep. 5, 14052 (2015).CrossRefGoogle Scholar
  65. 65.
    L.B. Fan, Q.L. Ma, J. Tian, D. Li, X. Xi, X.T. Dong, W.S. Yu, J.X. Wang, and G.X. Liu, RSC Adv. 7, 48702 (2017).CrossRefGoogle Scholar
  66. 66.
    Z.J. Wang, Q.L. Ma, X.T. Dong, D. Li, X. Xi, W.S. Yu, J.X. Wang, and G.X. Liu, ACS Appl. Mater. Interfaces 8, 26226 (2016).CrossRefGoogle Scholar
  67. 67.
    J.X. He, K. Qi, Y.M. Zhou, and S.Z. Cui, J. Appl. Polym. Sci. 131, 631 (2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin ProvinceChangchun University of Science and TechnologyChangchunChina

Personalised recommendations