Advertisement

Calculation of Magnetic Exchange Interactions and Construction of a Spin Model for Low-Dimensional Magnetic Compounds

  • Zlata V. Pchelkina
5th International Conference of Asian Union of Magnetics Societies
  • 8 Downloads
Part of the following topical collections:
  1. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)
  2. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)

Abstract

Here we present a calculation scheme which allows us to obtain the electronic structure and exchange interaction parameters of low-dimensional magnetic compounds with subsequent construction of the spin model and verification of this model by comparing the simulated thermodynamic properties with experimental data. This scheme is implemented to quasi-one-dimensional (1D) perovskite \(\hbox {KCuF}_3\), the S = 1 spin ladder \(\hbox {Rb}_3\hbox {Ni}_2(\hbox {NO}_3)_7\) compound, and potassium dimanganese trivanadate, \(\hbox {KMn}_2\hbox {V}_3\hbox {O}_{10}\), containing Mn tetramers.

Keywords

Exchange interactions low-dimensional systems spin models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Lacroix, P. Mendels and F. Mila (eds.), Introduction to Frustrated Magnetism, Springer Series in Solid-State Sciences 164, 23. Springer-Verlag, Berlin Heidelberg (2011).Google Scholar
  2. 2.
    K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, S. de Gironcoli, T. Deutsch, J.K. Dewhurst, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, J.A. Flores-Livas, K.F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs, E.K.U. Gross, A. Gulans, F. Gygi, D.R. Hamann, P.J. Hasnip, N.A.W. Holzwarth, D. Iusan, D.B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçükbenli, Y.O. Kvashnin, I.L. M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C.J. Pickard, W. Poelmans, M.I.J. Probert, K. Refson, M. Richter, G.-M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M.J. van Setten, V. Van Speybroeck, J.M. Wills, J.R. Yates, G.-X. Zhang, and S. Cottenier, Science 351, 3000 (2016)CrossRefGoogle Scholar
  3. 3.
    C. Lanczos, J. Res. Natl. Bur. Stand. 49, 225 (1950).Google Scholar
  4. 4.
    U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).CrossRefGoogle Scholar
  5. 5.
    E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).CrossRefGoogle Scholar
  6. 6.
    J. Gubernatis, N. Kawashima, and P. Werner, Quantum Monte Carlo Methods, Cambridge University Press, Cambridge (2016)CrossRefGoogle Scholar
  7. 7.
    L. Noodleman, J. Chem. Phys. 74, 5737 (1981).CrossRefGoogle Scholar
  8. 8.
    A.A. Tsirlin, Phys. Rev. B 89, 014405 (2014).CrossRefGoogle Scholar
  9. 9.
    A. Liechtenstein, V. Gubanov, M. Katsnelson, and V. Anisimov, J. Magn. Magn. Mat. 36, 125 (1983).CrossRefGoogle Scholar
  10. 10.
    A.I. Liechtenstein, M.I. Katsnelson, V.P. Antropov, and V.A. Gubanov, J. Magn. Magn. Mat. 67, 65 (1987).CrossRefGoogle Scholar
  11. 11.
    M.I. Katsnelson and A.I. Lichtenstein, Phys. Rev. B 61, 8906 (2000).CrossRefGoogle Scholar
  12. 12.
    M. Korotin, V.V. Mazurenko, V.I. Anisimov, and S.V. Streltsov, Phys. Rev. B. 91, 224405 (2015)CrossRefGoogle Scholar
  13. 13.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
  14. 14.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. Universitat Wien, Wien, 2001).Google Scholar
  15. 15.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  16. 16.
    A.A. Mostofi, J.R. Yates, G. Pizzi, Y.S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 185, 2309 (2014).CrossRefGoogle Scholar
  17. 17.
    I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001).CrossRefGoogle Scholar
  18. 18.
    V. Anisimov, D. Kondakov, A. Kozhevnikov, I. Nekrasov, Z. Pchelkina, J. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, Phys. Rev. B 71, 125119 (2005).CrossRefGoogle Scholar
  19. 19.
    H. Xiang, C. Lee, H.-J. Koo, X. Gong, and M.-H. Whangbo, Dalton Trans. 42, 823 (2013).CrossRefGoogle Scholar
  20. 20.
    B. Bauer, L.D. Carr, H.G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S.V. Isakov, D. Koop, P.N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawłowski, J.D. Picon, L. Pollet, E. Santos, V.W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M.L. Wall, P. Werner, and S. Wessel, J. Stat. Mech. 2011, P05001 (2011).Google Scholar
  21. 21.
    K.I. Kugel and D.I. Khomskii, Sov. Phys. Uspekhi 25, 231 (1982).CrossRefGoogle Scholar
  22. 22.
    A. Okazaki, J. Phys. Soc. Jpn. 26, 870 (1969).CrossRefGoogle Scholar
  23. 23.
    V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).CrossRefGoogle Scholar
  24. 24.
    V.I. Anisimov, A.I. Poteryaev, M.A. Korotin, A.O. Anokhin, and G. Kotliar, J. Phys. Condens. Matter 9, 7359 (1997).CrossRefGoogle Scholar
  25. 25.
    A.I. Lichtenstein and M.I. Katsnelson, Phys. Rev. B 57, 6884 (1998).CrossRefGoogle Scholar
  26. 26.
    N. Binggeli and M. Altarelli, Phys. Rev. B 70, 085117 (2004).CrossRefGoogle Scholar
  27. 27.
    E. Pavarini, E. Koch, and A.I. Lichtenstein, Phys. Rev. Lett. 101, 266405 (2008).CrossRefGoogle Scholar
  28. 28.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
  29. 29.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  30. 30.
    A.I. Liechtenstein, V.I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).CrossRefGoogle Scholar
  31. 31.
    A. Okazaki and Y. Suemune, J. Phys. Soc. Jpn. 16, 176 (1961).CrossRefGoogle Scholar
  32. 32.
    J.C. Bonner and M.E. Fisher, Phys. Rev. 135, A640 (1964).CrossRefGoogle Scholar
  33. 33.
    H. Miike and K. Hirakawa, J. Phys. Soc. Jpn. 38, 92 (1975).CrossRefGoogle Scholar
  34. 34.
    S. Kadota, I. Yamada, S. Yoneyama, and K. Hirakawa, J. Phys. Soc. Jpn. 23, 751 (1967).CrossRefGoogle Scholar
  35. 35.
    Z.V. Pchelkina, V.V. Mazurenko, O.S. Volkova, E.B. Deeva, I.V. Morozov, V.V. Shutov, S.I. Troyanov, J. Werner, C. Koo, R. Klingeler, and A.N. Vasiliev, Phys. Rev. B 97, 144420 (2018).CrossRefGoogle Scholar
  36. 36.
    O. Yakubovich, L. Shvanskaya, Z. Pchelkina, O. Dimitrova, A. Volkov, O. Volkova, and A. Vasiliev, Acta Cryst. B 74, 97 (2018).CrossRefGoogle Scholar
  37. 37.
    V. Anisimov, F. Aryasetiawan, and A. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).Google Scholar
  38. 38.
    A.K. Cheetham and D.A.O. Hope, Phys. Rev. B 27, 6964 (1983).CrossRefGoogle Scholar
  39. 39.
    V.V. Mazurenko and V.I. Anisimov, Phys. Rev. B 71, 184434 (2005).CrossRefGoogle Scholar
  40. 40.
    O.K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of SciencesEkaterinburgRussia
  2. 2.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations